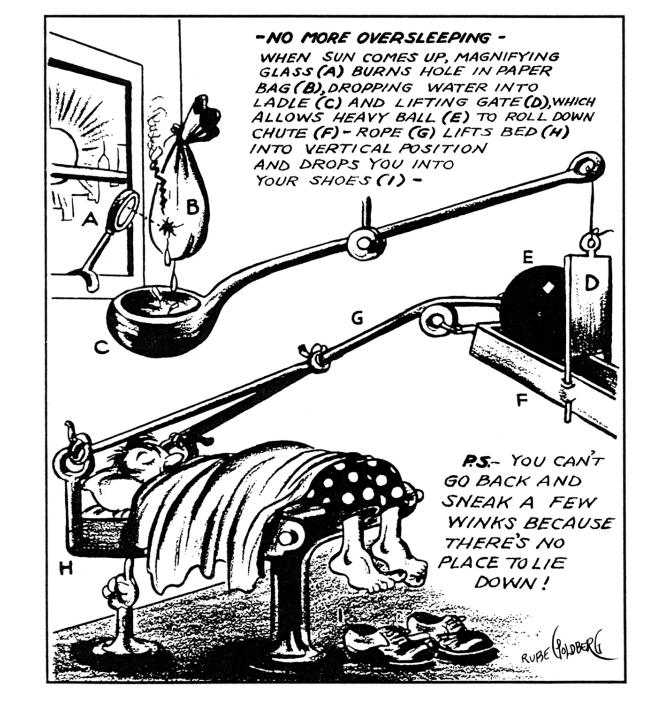

(Signal transduction in cytoplasma (Serine/threonine kinase inhibitors) The PI3K-AKT-mTOR Ras-Raf-Mek-ERK Pathway

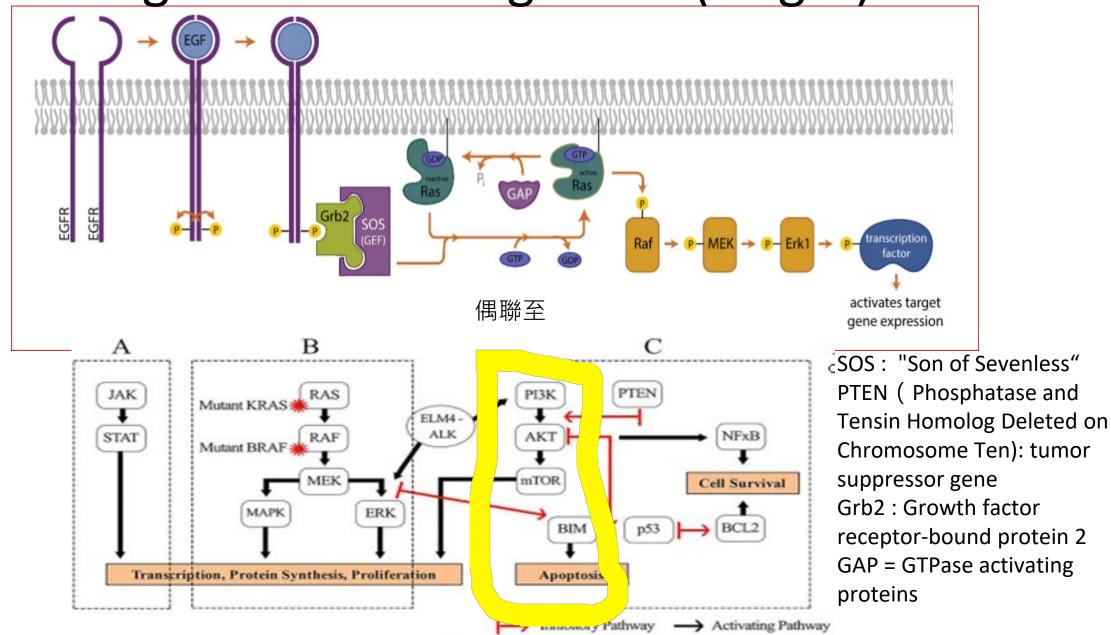
Clinical phatmacist : Li-hua Fang 2024/10/23

正常細胞內運行如同精細 的集成電路,並經過重新 編程以調節癌細胞內的標 誌性功能。 單獨的子電路 此處在不同顏色的區域 中進行了描述)專用於協 調各種功能。 一方面,這 種描述是簡單的,因為在 這些子電路之間存在相當 大的串擾(crosstalk)。此 外,由於每個癌細胞都暴 露於來自其微環境的信號 的複雜混合物,因此這些 子電路中的每一個都與來 自腫瘤微環境中其他細胞 的信號相連。

Cell 2011 Mar 4;144(5):646-74



Cancer biology : Rube Goldberg model

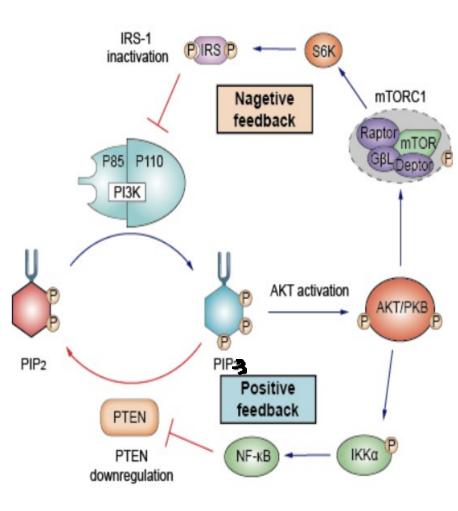

The concept of targeted therapy

• Find out the message

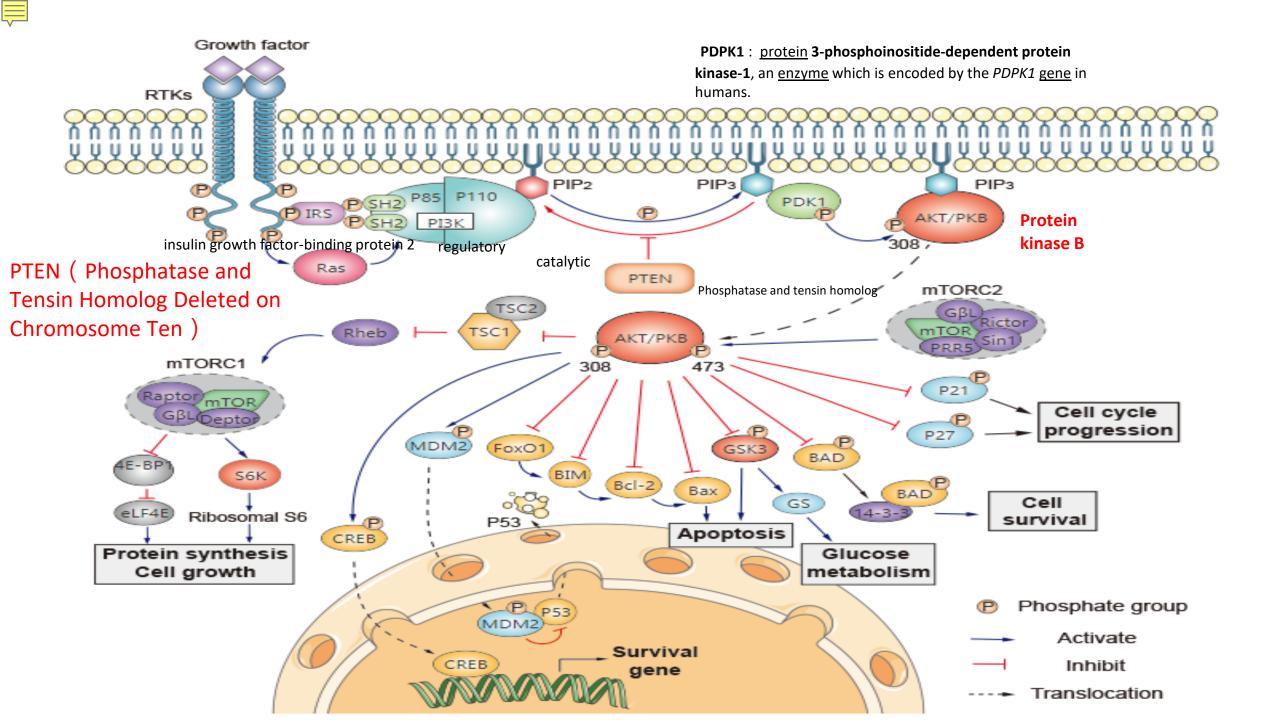
- •Cancer Driven gene
- Resistance is the destiny

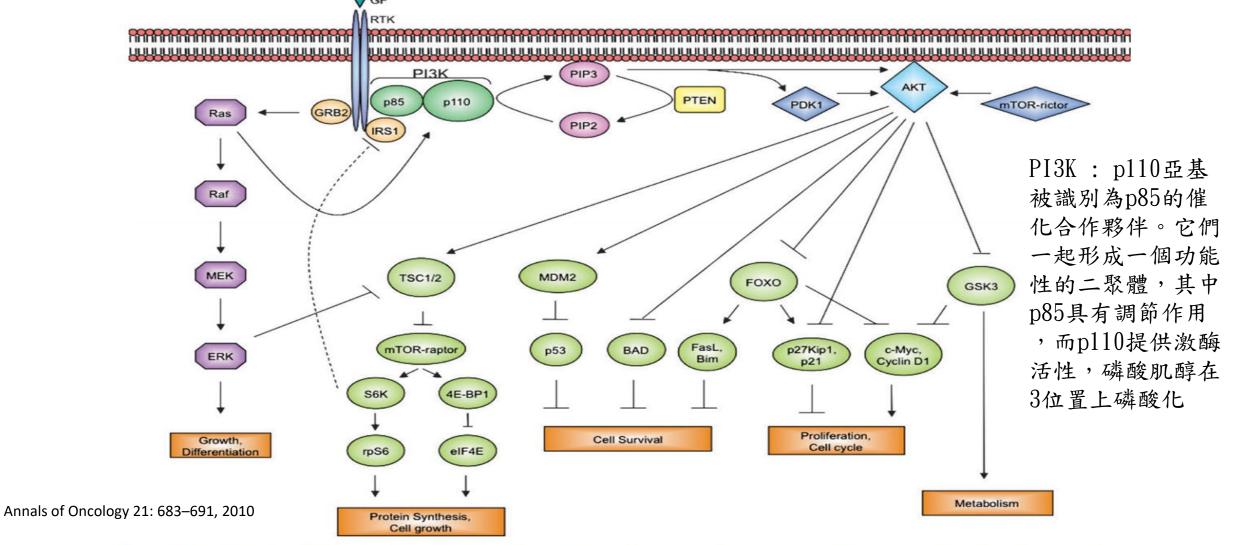
Regulation of cell growth (target)

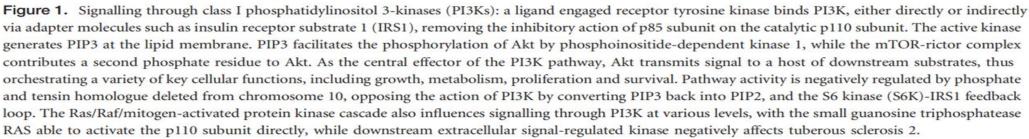
RAS Signaling Pathways

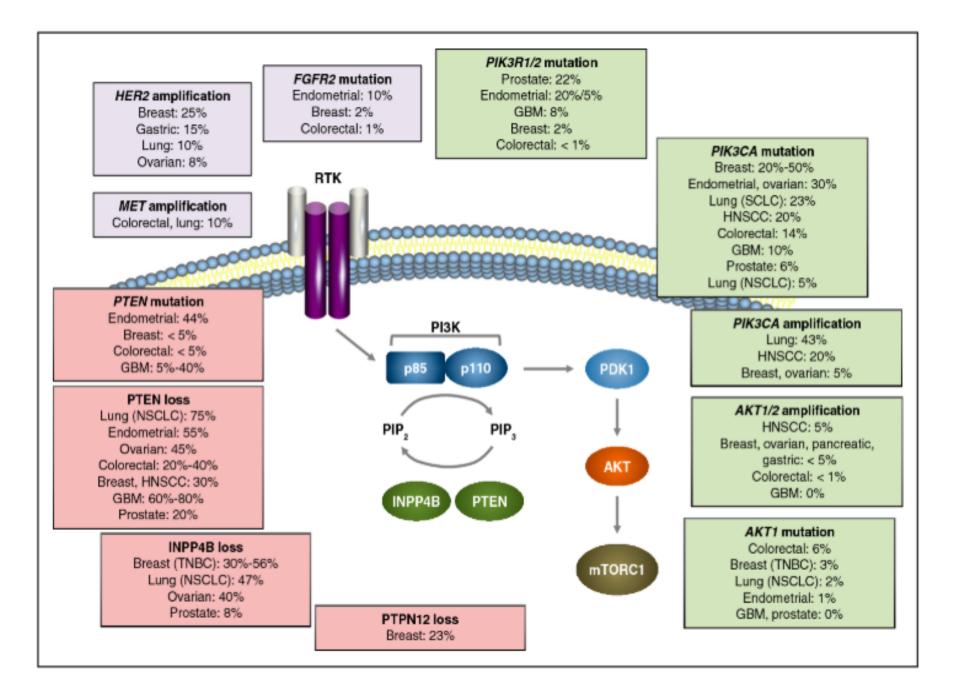

- The PI3K-AKT-mTOR
 - PI3K Inhibitors (-Lisib)
 - <u>Alpelisib</u> (PI3Kα) –breast
 - Inavolisib (PI3Kα) –breast
 - <u>Copanlisib</u> (Pan-PI3K) follicular lymphoma
 - <u>Duvelisib</u> (PI3Kγ/δ) :CLL, SLL, Follicular lymphoma
 - <u>Idelalisib</u> (PI3Kδ) : CLL, Follicular lymphoma
 - <u>Umbralisib</u> (PI3Kδ, CK1ε (casein kinase 1 epsilon) :MZL, FL
 - mTOR inhibitor (-Limus)
 - Everolimus, :RCC, breast cacner, Pancreatic cancer
 - <u>Temsirolimus</u>

The RAS-RAF-MEK-ERK (Mitogen-activated protein kinase pathway)


- RAS inhibitors : sotorasib, Adagrasib
- RAF inhibitors (fenib):BRAF V600E mutation melanoma
 - Vemurafenib
 - Darafenib (BRAF/CRAF) : combination with trametinib (MEK inhibitor),
 - Encorafenib (BRAF) : combined with binimetinib (MEK inhibitor)
- MEK inhibitor (metinib)
 - Binimetinib
 - <u>Cobimetinib</u> (MEK1/2)
 - <u>Selumetinib</u> (MEK1/2)
 - Trametinib (MEK1/2)
- Neurofibromatosis type1 : Selumetinib

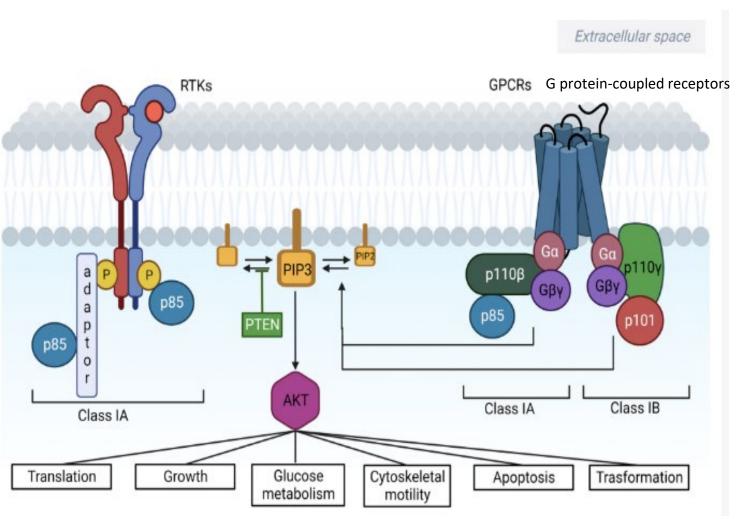

A brief history of AKT signaling


- PI3K-Akt途徑是一種細胞內信號轉導途徑,回應於細胞外信號來促進新陳代謝,增殖,細胞存活,生長和血管生成。
- 通過一系列絲氨酸(serine)和/或 (threonine)酸磷酸化調解 下游物質。
- 涉及的關鍵蛋白有磷脂酰肌醇3-激酶(PI3K)和Akt/PKB(蛋白激酶B)。PKB / Akt研究的起源可以追溯到1977年,由 Staal和同事發現,這是以前未曾描述過的病毒癌基因ATK8。
 並分離出該細胞來源的致癌序列並命名為ATK。
- 1991年,三個獨立的研究小組鑑定了與PKB / Akt對應的基因 (The serine/threonine kinase AKT, also known as protein kinase B (PKB)。這三篇論文確立了PKB / Akt作為 一種廣泛表達的新型磷蛋白激酶,並奠定了PKB / Akt在多種 細胞過程中的作用的方式。
- 一種叫做磷脂酰肌醇3激酶(The phosphoinositide 3' kinase, PI3K)的酶是1990年由Cantley小組分離出來的。 PI3K產生的PIP3(膜磷脂)是激活PKB/Akt所必需的組成部分。



Akt: protein kinase-B

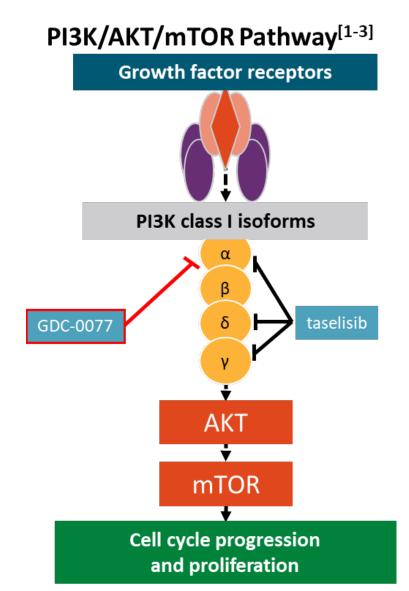
Targeted drugs (breast cancer, FL,CLL)


- Chromosome Isoform **PI3K-AKT-mTOR Signaling Pathway** localization PI3K inhibitor AKT1 Kinase domain 14q32 RD Alpelisib, Copanlisib, Duvelisib, Idelalisib (480aa) • mTOR inhibitor (mammalian target of rapamycin) Everolimus, Temsirolimus • AKT inhibitor AKT2 capivasertib (selective ATP-competitive pan-AKT kinase inhibitor) 19q13 PH Kinase domain RD (481aa) AKT target protein • FoxO1, GSK-3 (Glycogen synthase kinase-3), PTEN **RD** : Regulatory Domain. • **Mtor (** a serine/threonine protein kinase) AKT3 Three AKT isoforms (AKT1, AKT2, and AKT3) Kinase domain 1a44 RD (479aa)
- AKT1 and AKT2 present a ubiquitous distribution, AKT3 : in neural cells ٠
- Enhanced activation in breast, ovarian, pancreatic, and prostate cancers among others. ٠
- AKT1 is involved in proliferation and growth, promoting tumor initiation and suppressing apoptosis, whereas AKT2 regulates cytoskeleton dynamics, favoring invasiveness and metastatization.
- AKT3 hyperactivation : controversial •

٠

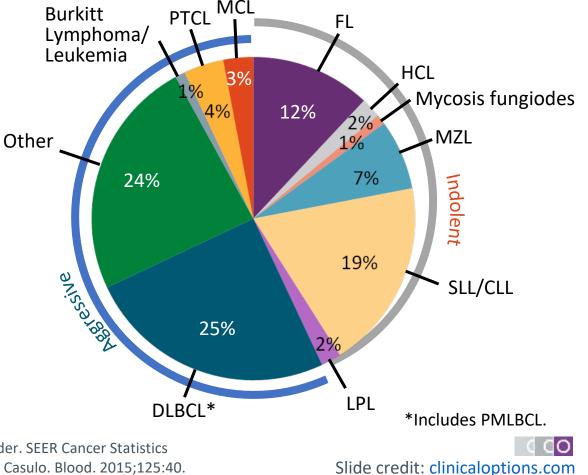
٠

PI3K/AKT (The phosphoinositide 3' kinase/ protein kinase-B)

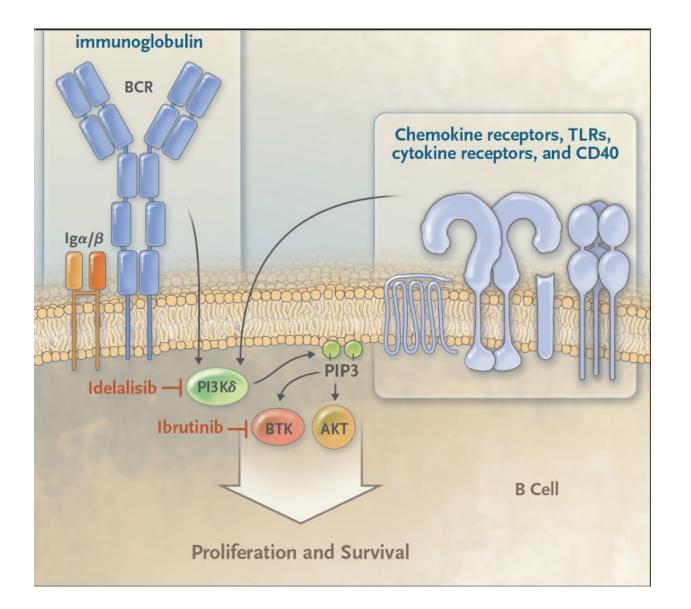

- PI3Ks are grouped into three classes based on their structures and substrate specificities
- The phosphoinositide 3' kinase (PI3K) family consists of 3 classes of lipid kinases that have a regulatory subunit (p85) and a catalytic subunit (p110) that phosphor catylate the 3'OH group of phosphoinositols.
- Class IA PI3Ks : somatic mutations in the catalytic subunit p110a (*PIK3CA*)
 - 30% of epithelial cancers (breast, colon, prostate, endometrial).
- Class I PI3Ks, which are further divided into four isoforms: α (alpha), β (beta), γ (gamma), anc δ (delta).

Cancers 2023, 15(3), 703; https://doi.org/10.3390/cancers15030703

Phosphoinositide 3-kinase (PI3K)inhibitors

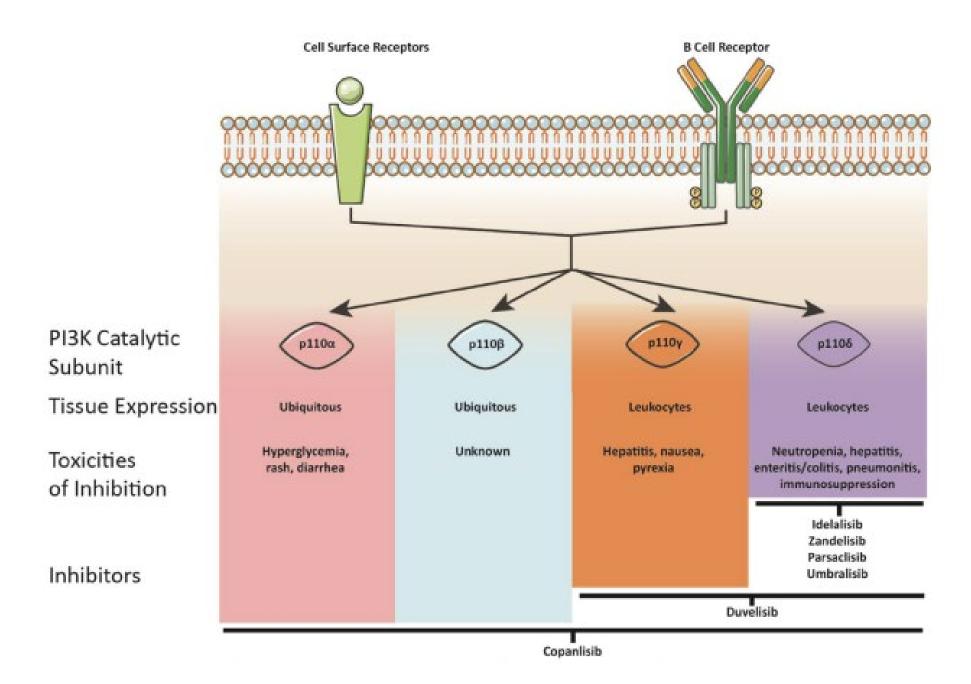

- PI3Kα (alpha): Widely expressed in tissues, with a notable presence in the insulinresponsive tissues.
- PI3Kβ (beta): Ubiquitously expressed, but plays a unique role in platelets.
- PI3Kγ (gamma): Primarily expressed in leukocytes.
 - hematological malignancies and has roles in certain immune-mediated disorders.
- PI3Kδ (delta) : Predominantly found in lymphoid (CLL, Indolent Non-Hodgkin Lymphoma)

What Is Follicular Lymphoma?


- Second most common form of NHL in the United States and Western Europe^[1]
 - Estimated 13,960 new diagnoses in United States in 2016^[2]
- Median age at diagnosis: 63 yrs^[3]
- Despite most patients presenting with asymptomatic lymphadenopathy, majority are diagnosed with disseminated disease^[1]
- 2% risk per year of FL transforming into an aggressive lymphoma (eg, DLBCL), with implications for prognosis and management^[1,5,6]

1. Freedman. Am J Hematol. 2020;95:316. 2. Teras. CA Cancer J Clin. 2016;66:443. 3. Howlander. SEER Cancer Statistics Review, 1975-2017. NCI. 4. Armitage. JCO. 1998;16:2780. 5. Al-Tourah. JCO. 2008;26:5165. 6. Casulo. Blood. 2015;125:40.

A PI3Kδ Inhibitor for B-Cell Cancers Idelalisib


B 細胞受體 (BCR) 訊號傳導會活化 磷酸肌醇 3- 激酶 (PI3K) · 產生第 二信使磷酸肌醇 3,4,5- 三磷酸酯 (PIP3), 進而活化布魯頓酪氨酸激 酶 (BTK) 和 AKT · AKT 是一種可結 合 PIP3 的促生存激酶,在許多實 體腫瘤中扮演關鍵角色。 Idelalisib 是 PI3K δ 異構型的選擇 性抑制劑,針對惡性 B 細胞中 BCR 下游的信號轉導,而 ibrutinib 則針對 BTK。PI3K 和 BTK 也會在 B 細胞上許多其他受體的下游被活 化,包括 CD40、細胞激素受體、 化學因子受體和 toll-like 受體 (TLR)。BCR 由與 Igα 和 Igβ 兩種訊 號鏈相關的抗體重鏈和輕鏈組成

PI3K Inhibitors in CLL

	Phase I: Duvelisib Monotherapy ⁹	Phase III DUO: Duvelisib vs Ofatumomab ¹⁰	Phase III: Idelalisib- Rituximab vs Rituximab ²²
N	55 (R/R CLL)	160 (Duvelisib), 159 (Ofatumumab)	110 (Idelalisib-Rituximab), 110 (Rituximab)
Median prior therapies	4 (1-11)	2 (1-10) vs 2 (1-8)	3 (1-12) vs 3 (1-9)
Median years since diagnosis	8.5 (0.7-20.9)	7.5 vs 6.7	8.6 vs 9.0
ORR, %	56.4	73.8 vs 45.3*	83.6 vs 15.5*
- CR	1.8	0.6 vs 0.6	0 vs 0
- PR	54.5	72.5 vs 44.7	83.6 vs 15.5*
- SD	34.5	21.3 vs 39.6	11.8 vs 64.5
PFS, months	15.7	13.3 vs 9.9	19.4 vs 6.5
Discontinued due to adverse events, %	36.4	35.0 vs 4	20 vs 10.9
Key Grade ≥3 adverse events with frequency ≥10%	Neutropenia, anemia, thrombocytopenia, pneumonia, transaminitis	Neutropenia, Anemia, Diarrhea/Colitis, Pneumonia	Neutropenia, Pneumonia

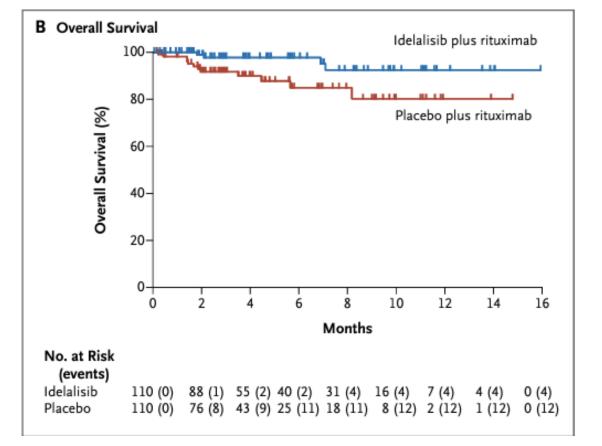
PI3K inhibitors—FL and MZL subsets

(Dose and Route)	Target(s)	Trial (Sampl e Size)	Efficacy	Gr3+ AE's	Drug D/C Rate Due to AE's	FDA Approval FDA
Idelalisib 150 mg oral bd	ΡΙ3Κδ	Ph 2 (72 FL)	FL ORR 56% (14% CR) Median PFS 11 Mo	Diarrhea/colitis (16%), pneumonia (7%), hepatic (13%), neutropenia (27%)	20%	Yes, after 2 lines
Duvelisib 25 mg oral bid	PI3Kγ and PI3Kδ	Ph 2 (83 FL)	FL ORR 42% (1% CR) Median PFS 9.5	Diarrhea/colitis (20%), pneumonia (5.4%), hepatic (5.4), febrile neutropenia	24%	Yes, after 2 lines
Copanlisib 60 mg 1hr IV infusion, D1, 8, 15 q 28d	Pl3Kα and Pl3Kγ Pl3Kα 和 Pl3Kγ	Ph 2 (104 FL)	FL ORR 59% (20% CR) Median PFS 12.5 Mo	Hyperglycemia (40%), hypertension (24%), diarrhea (9%), pneumonia (11%)	26.8%	Yes, after 2 lines
Umbralisib 800 mg oral qd Cancers 2022, 14	PI3Kδ and casein kinase-1ε (5), 1276.	Ph 2 (117 FL, 69 MZL)	FL ORR 45% (5% CR) Median PFS 10.6 Mo MZL ORR 49% (16% CR) 2 year PFS 51%	Diarrhea (10%), hepatic (7%), neutropenia (12%) ORR, overall response rate; PFS, prog MZL, marginal zone lymphoma.	15% ression free survival; FL, fo	Yes, after 3 lines

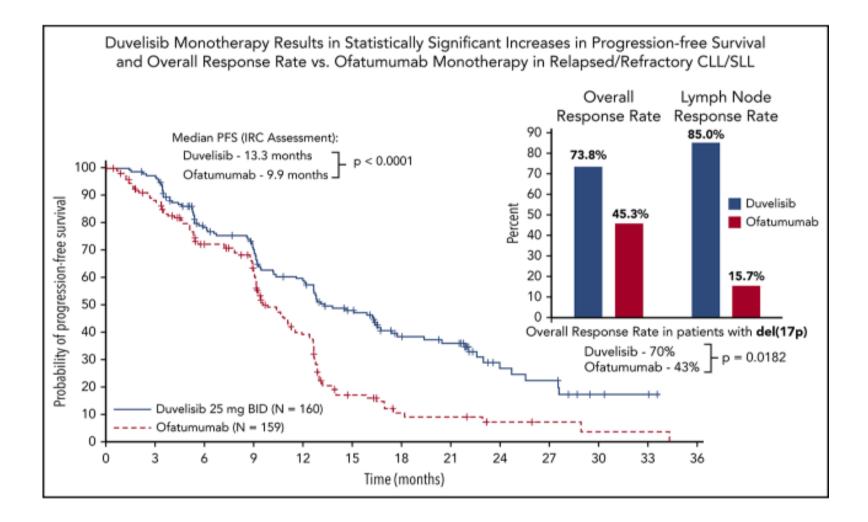
Hematol Oncol Clin N Am 35 (2021) 807-826

Phosphoinositide 3-kinase (PI3K)inhibitors


- Idelalisib (PI3K Delta inhibitor) :FDA approved July 2014
 - relapsed or refractory chronic lymphocytic leukemia (CLL) in combination with <u>rituximab</u>
 - relapsed small lymphocytic lymphoma in patients who have received at least two prior systemic therapies,
 - 3rd line follicular lymphoma in patients who have received at least two prior systemic therapies.
- Copanlisib (Inhibitor of PI3K, PI3K- α and PI3K- δ) :Approved in 2017 Ω
 - Relapsed <u>follicular lymphoma</u> (FL) who have received at least two prior systemic therapies.
- Duvelisib (an oral dual inhibitor of PI3K-delta and PI3K-gamma) Approved in 2018
 - Adult patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after at least two prior therapies
 - Relapsed or refractory follicular lymphoma (FL) after at least two prior systemic therapies.
- <u>Alpelisib</u> (alpha-specific PI3K inhibitor) : Approved in 2019
 - combination with fulvestrant for treatment of HR-positive and HER2/neu-(-) breast cancer


Drug Name	Trial Name (Study Pts N)	Target Subtype	Indication	Comparative Protocol	-	Comparative PFS (months)	Comparative OS months	Adverse Events	Source Journal
delalisib	Study 116 (220)		Chronic Lymphocytic	Idelalisib + Rituximab vs. Placebo + Rituximab	81% vs. 13%	not reached vs. 5.5 months	vs. 80%; P =	hepatotoxicity.	NEJM. 2014 370(11): 997– 1007.
Duvelisib	DUO Trial (319)	ΡΙ3Κδ/ν	Relapsed/Refrac tory CLL/SLL			13.3 vs. 9.9 months	38.4 months vs. 31.6 months	Diarrhea, neutropenia, infections, transaminase elevation	Blood (2018) 132 (23): 2446–2455.
	CHRONOS-3 (458)	ΡΙ3Κα/δ	Relapsed Indolent Non- Hodgkin Lymphoma	Copanlisib + Rituximab vs. Placebo + Rituximab	81% vs. 48%	21.5 vs. 13.8 months (p<0·0001))	Not Reached vs. Not Reached		Lancet Oncol. 2021 Jun;22(6):e23
	UNITY-CLL (421)		Relapsed/Refrac tory CLL/SLL	Umbralisib + Ublituximab vs. Obinutuzumab + Chlorambucil	68%	31.9 vs. 17.9 months	Not Reached vs. Not Reached	Diarrhea, neutropenia, nausea, hepatotoxicity	Lancet Haematology, 2021

Drug Name		Target Subtype	Indication			Comparative PFS (months)	Comparative OS months	Adverse Events	Source Journal
Alpelisib	SOLAR-1 (572)	ΡΙ3Κα	HR+/HER2- Advanced Breast Cancer	Alpelisib + Fulvestrant vs. Placebo + Fulvestrant	36% vs. 16%	11.0 vs. 5.7 months	39.3 months vs. 31.4 months	Hyperglycemia, rash, diarrhea, fatigue	NEJM, 2019;380:1929- 1940
INAVO1 20	INAVO120 (325)	PI3Kα Selectiv e mutatio n	Endocrine- resistant, PIK3CA- mutated, HR (+), HER2 (-), locally advanced or metastatic breast cancer	Inavolisib + palbociclib + fulvestrant vs. placebo + palbociclib + fulvestrant	58% vs. 25%	15.0 vs. 7.3 months ; p < 0.0001) Median DOR : 18.4 vs 9.6 months	not statistically significant at interim analysis	$(\geq 20\%)$ neutrophils, \downarrow Hb, \uparrow fasting glucose, \downarrow , \downarrow platelets, lymphocytes, stomatitis, diarrhea, decreased calcium, fatigue, \downarrow K, Na, Mg , \uparrow creatinine, ALT, rash	J Clin Oncol. 2024;42 (suppl 16):1003. NEJM 2024;391:15 84-1596


Idelalisib + Rituximab vs Idelasib

- Duration of progression-free survival : idelalisib and rituximab : not reached; placebo and rituximab : 5.5 months (P<0.001) (Panel A)
- The median duration of overall survival in the two study groups had also not been reached; the overall survival rate was 92% in the idelalisib group versus 80% in the placebo group at 12 months (P = 0.02)

The phase 3 DUO trial: duvelisib vs of atumumab (CD20) in relapsed and refractory CLL/SLL

PI3K Inhibitor Toxicities

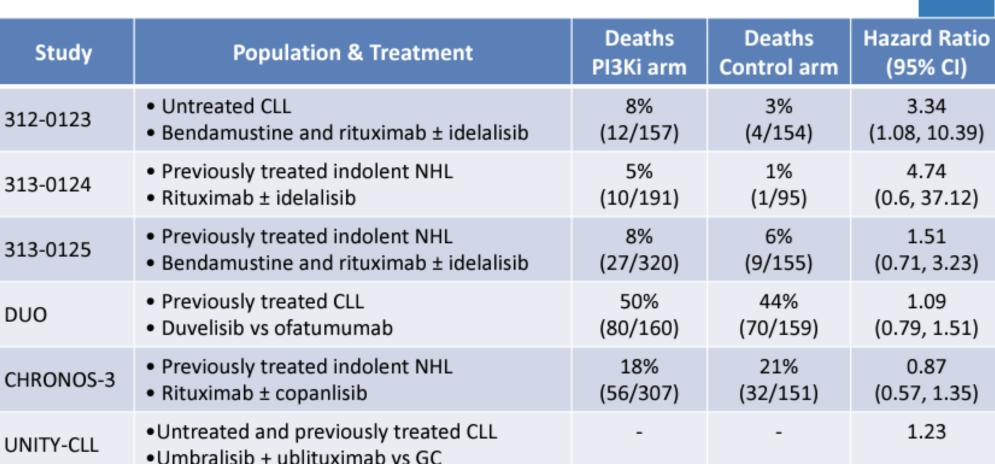
	ldelalisib N= 146	Copanlisib N= 244	Duvelisib N= 442	Umbralisib N= 371
Grade ≥ 3 AE	71%	85%	84%	51%
SAEs	50%	51%	65%	26%
Discontinuations due to AE	23%	24%	35%	15%
Dose Reduction due to AE	41%	24%	23%	10%
Grade ≥ 3 Infection	23%	23%	27%	20%
Grade ≥ 3 Neutropenia	28%	29%	43%	17%
Grade ≥ 3 Diarrhea/Colitis	14%	5%	23%	7%
Grade ≥ 3 AST/ALT increase	18%	2%	8%	7%
Grade ≥ 3 Rash	4%	2%	9%	3%
Grade ≥ 3 Pneumonitis	5%	7%	7%	1%
Grade ≥ 3 Hyperglycemia	-	34%	-	-
Grade ≥ 3 Hypertension	-	29%	-	-

Abbreviations: AE- Adverse Event; SAE- Serious Adverse Event

The saga of PI3K inhibitors in haematological malignancies: survival is the ultimate safety endpoint Lancet Oncol. 2022 May;23(5):563-566

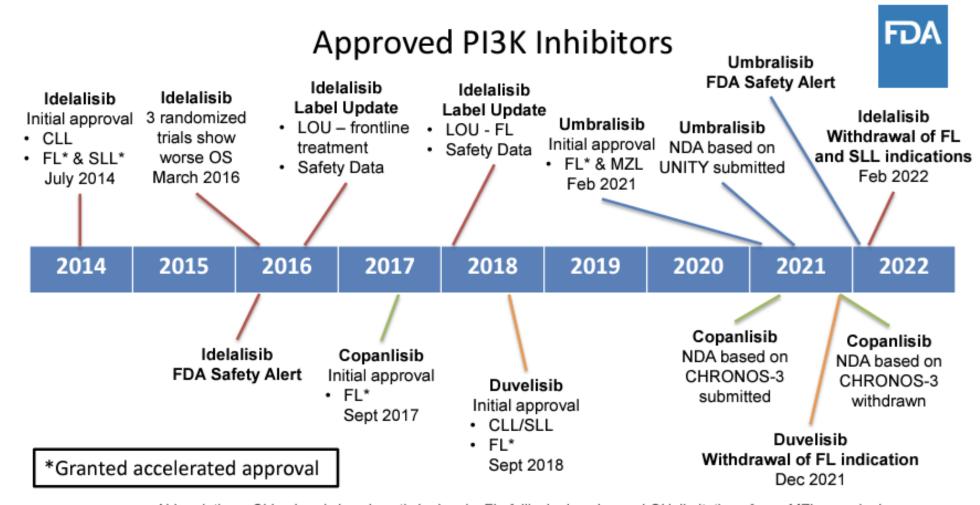
	Initial approval information*	Post-approval trials	Outcome
Idelalisib (PI3K	δ inhibitor)		
		2016: three RCTs halted in CLL or indolent non-Hodgkin lymphoma for increased deaths and serious toxic side-effects:	
		 idelalisib + bendamustine + R vs placebo plus bendamustine plus R in untreated CLL 	
	2014: in combination with R +	 idelalisib + R vs placebo + R in relapsed or refractory indolent non-Hodgkin lymphoma 	Warning and
	idelalisib vs placebo + R in relapsed CLL : progression-free survival HR	 idelalisib with bendamustine + R vs placebo with Bendamustine + R in relapsed or refractory indolent non-Hodgkin lymphoma. 	limitations of use added to prescribing
Regular approval	0·18 (95% Cl 0·10–0·31), OS : immature	Pooled analysis : idelalisib groups vs control: deaths 7·4% vs 3·5%, overall survival HR 2·29	information (2016, 2018)
Accelerated approval	2014: relapsed FL and SLL after ≥2 systemic therapies on single-arm trial: FL : ORR 54%, MRD : not reached; SLL : ORR 58% (95% CI 37– 77), MDR : 11·9 months	Required post-marketing trial: slow accrual to trial evaluating idelalisib dosage in relapsed or refractory follicular lymphoma	Voluntary withdrawal of FL and SLL indications (2022)
Copanlisib (PI3	Kα and PI3Kδ inhibitor)		-
	2017: relapsed FL after ≥2 systemic therapies based on single-arm trial:	CHRONOS-3: RCT of copanlisib + rituximab vs placebo + rituximab in relapsed indolent non-Hodgkin	Voluntary withdrawal
Accelerated approval	ORR 59% (95% CI 49–68), MDR: 12.2 months	lymphoma: ² progression-free survival HR 0·52 (95% CI 0·39– 0·69), interim OS HR 1·07 (95% CI 0·63–1·82)	of NDA based on CHRONOS-3

Post-approval trials


Duvelisib (ΡΙ3Κδ and Ρ	I3Kγ inhibitor)		
	2018: relapsed or refractory CLL or SLL		
	after ≥2 therapies based on a RCT of		Under FDA review: Not
	duvelisib vs ofatumumab in relapsed or		indicated for initial or
	refractory CLL or SLL: PFS HR 0.52 , OS :	Final analysis, duvelisib vs ofatumumab:	2 nd line treatment in
Regular approval	immature	overall survival HR 1·11 (95% CI 0·80–1·53)	CLL or SLL
	2018: relapsed or refractory FL after ≥2		
	systemic therapies based on single-arm	Poquired post marketing trial: PCT was not	Voluntary withdrawal of
Accelerated approval	trial: ORR 42% (95% CI 31–54), 43% of	Required post-marketing trial: RCT was not initiated for commercial reasons	follicular lymphoma
	responses were ongoing at ≥6 months and		indication (2021)
	17% at ≥12 months		
Umbralisib (ΡΙ3Κδ and CK1	ε inhibitor)		
	regimen on single-arm trial: FL : ORR 43%,	UNITY-CLL: RCT of umbralisib + ublituximab vs obinutuzumab + chlorambucil in untreated and relapsed or refractory CLL : PFS HR 0·55 (95% CI 0·41–0·72); interim OS :	
Accelerated approval	not reached	HR 1·23 ^{55‡}	June, 2022

FDA=US Food and Drug Administration. HR=hazard ratio. NDA=new drug application. ODAC=Oncologic Drugs Advisory Committee. RCT=randomised controlled trial. chronic lymphocytic leukaemia (CLL) or small lymphocytic lymphoma (SLL), follicular lymphoma (FL) MZL: marginal zone lymphoma, Median of response duration (MRD)

The Lancet Oncology 2022, Volume 23, Issue 5, 563 – 566


Multiple Randomized Trials with Concerning Overall Survival

DUO

Abbreviations: CI, confidence interval, CLL, chronic lymphocytic leukemia, GC, Obinutuzumab + Chlorambucil, www.fda.gov NHL, non-Hodgkin lymphoma, PI3Ki, phosphatidylinositol 3-kinase inhibitor

FDA

Abbreviations: CLL, chronic lymphocytic leukemia, FL, follicular lymphoma, LOU, limitation of use, MZL, marginal zone lymphoma, NDA, new drug application, OS, overall survival, SLL, small lymphocytic lymphoma

The status of PI3K inhibitors (忘了吧)

• Toxicity and Safety Concerns

Infections: Higher risk of opportunistic infections (PJP, CMV), **Diarrhea and Colitis:** Significant gastrointestinal toxicities, including severe diarrhea and colitis, **Hepatotoxicity**, **Pneumonitis**

Higher Mortality: trials revealed a higher mortality rate in patients taking PI3K inhibitors, even though the drugs were effective in shrinking tumors.

• Disappointing Long-Term Efficacy:

Shorter PFS: showed promising progression-free survival (PFS) data, the benefits often did not translate into prolonged overall survival (OS)

Relapse and Resistance: Resistance mechanisms often emerged, leading to early relapse or disease progression.

● Regulatory Scrutiny (監管審查) Specific Withdrawals:

Umbralisib (withdrawn in 2022): An interim analysis of the UNITY-CLL trial showed increased risks of death and severe adverse events.

Duvelisib: While still approved, it has faced restrictions and negative recommendations

Idelalisib: Associated with high rates of serious infections and liver toxicity, leading to several clinical trial halts and decreased usage in practice.

The status of PI3K inhibitors in hematology (忘了吧)

• Toxicity and Safety Concerns

Infections: Higher risk of opportunistic infections (PJP, CMV), Diarrhea and Colitis: Significant gastrointestinal toxicities, including severe diarrhea and colitis, Hepatotoxicity, Pneumonitis

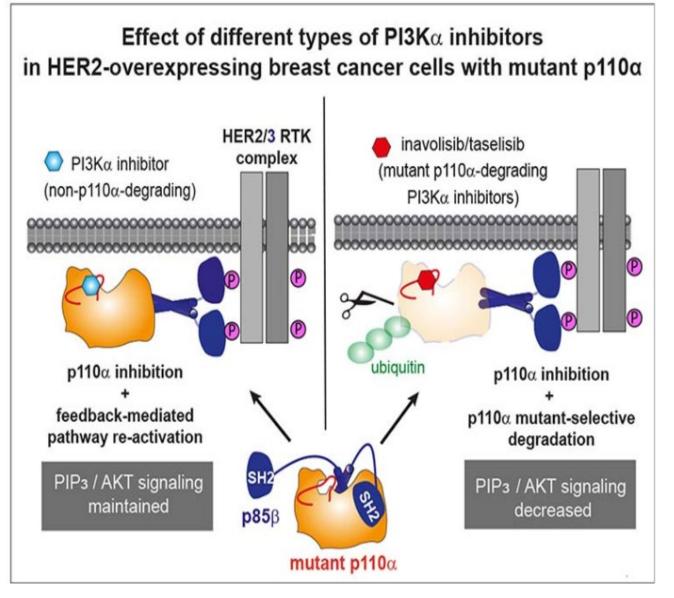
Higher Mortality: trials revealed a higher mortality rate in patients taking PI3K inhibitors, even though the drugs were effective in shrinking tumors.

• Disappointing Long-Term Efficacy:

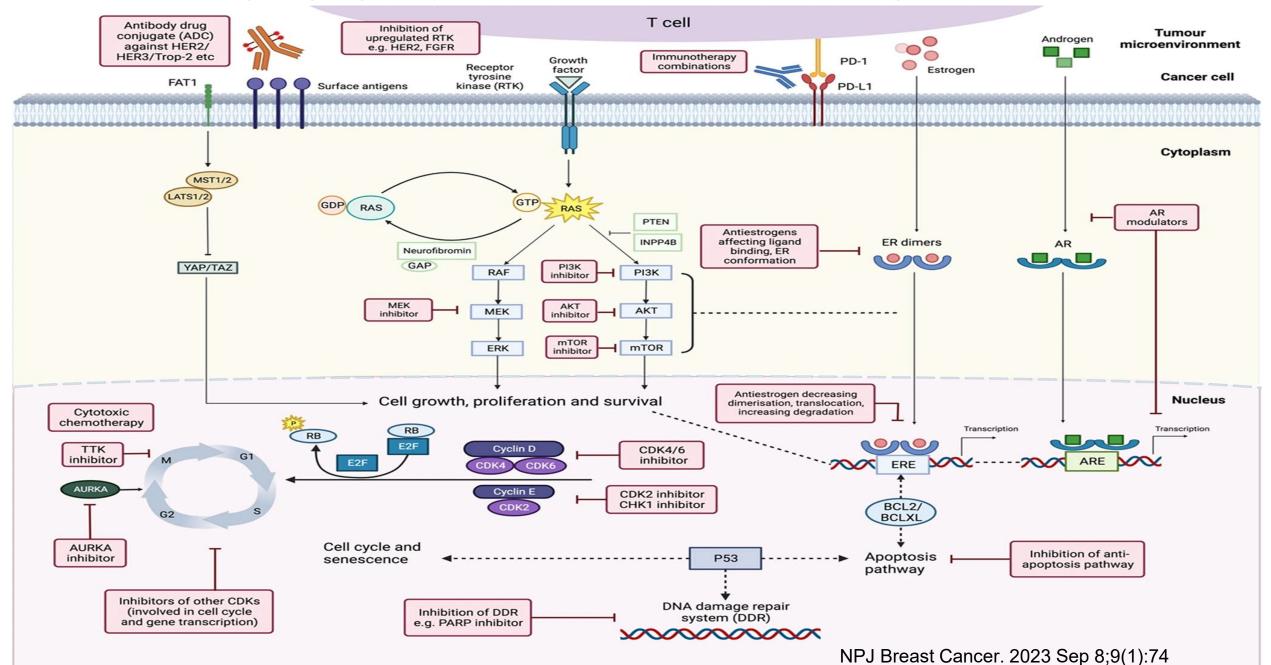
Shorter PFS: showed promising progression-free survival (PFS) data, the benefits often did not translate into prolonged overall survival (OS)

Relapse and Resistance: Resistance mechanisms often emerged, leading to early relapse or disease progression.

● Regulatory Scrutiny (監管審查) Specific Withdrawals:

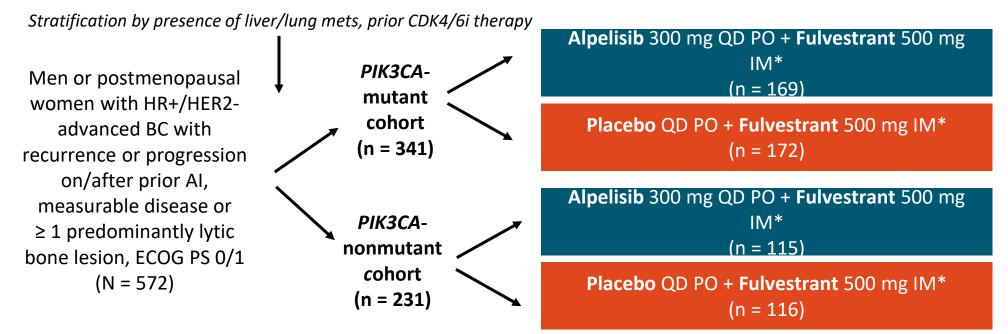

Umbralisib (withdrawn in 2022): An interim analysis of the UNITY-CLL trial showed increased risks of death and severe adverse events.

Duvelisib: While still approved, it has faced restrictions and negative recommendations


Idelalisib: Associated with high rates of serious infections and liver toxicity, leading to several clinical trial halts and decreased usage in practice.

PI3K Inhibitors in solid tumor

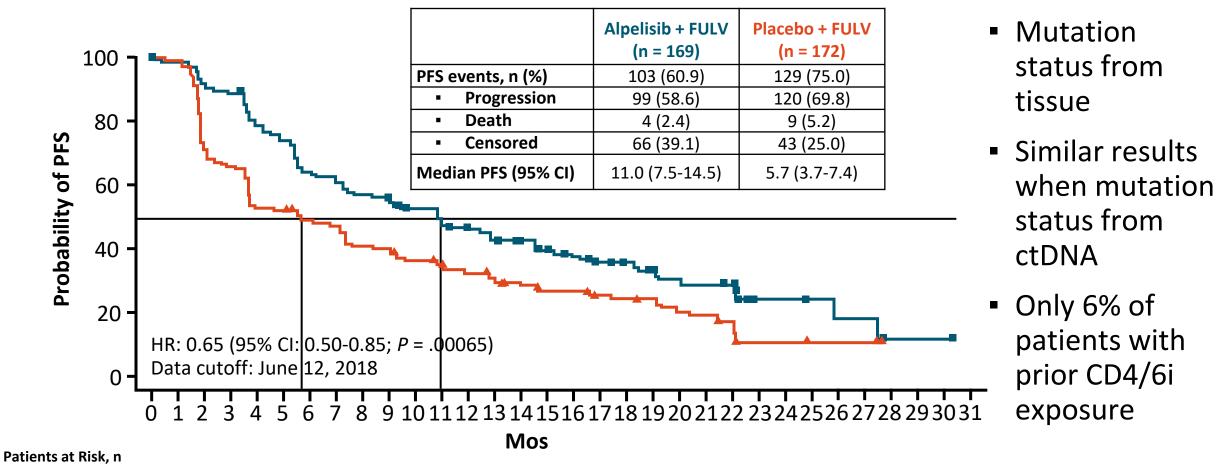
- Both alpelisib and inavolisib are selective
 PI3Kα inhibitors
 - Alpelisib primarily inhibits the enzyme activity of PI3Kα
 - Inavolisib not only inhibits the enzyme but also actively promotes the degradation of the mutated PI3Kα protein, leading to a more targeted and sustained inhibition of the pathway in cancer cells with PIK3CA mutations
 - Inavolisib acts as a "molecular degrader" of mutant PI3Kα, giving it a potential advantage over alpelisib in certain cancer types
- Alpelisib (Piqray)
- Inavolisib (Itovebi)



Oncogenic signaling pathways in HR + /HER2- ABC with potential therapeutic strategies.

SOLAR-1: Alpelisib + Fulvestrant vs Placebo + Fulvestrant in HR+/HER2- Advanced Breast Cancer

Randomized, double-blind, placebo-controlled phase III trial



*Fulvestrant given on Days 1,15 of 28 in cycle 1, then Day 1 thereafter.

- **Primary endpoint:** PFS (locally assessed) in all patients randomized to *PIK3CA*-mutant cohort
- Secondary endpoints: OS in *PIK3CA*-mutant cohort; PFS in *PIK3CA*-nonmutant cohort (proof of concept); PFS in ctDNA and ORR/CBR for both cohorts; safety for patients with ≥ 1 dose study drug

Ē

SOLAR-1: Locally Assessed PFS in *PIK3CA*-Mutant Cohort (Primary Endpoint)

 Alpelisib + FULV
 169 158 145141 123 113 97 95
 85 82 75 71 62 54 50 43 39 32 30 27 17 16 14 5 5 4 3 3 1 1 1 0

 Placebo + FULV
 172 167 120111 89 88 80 77 67 66 58 54 48 41 37 29 29 21 20 19 14 13 9 3 3 2 2 2 0 0 0 0

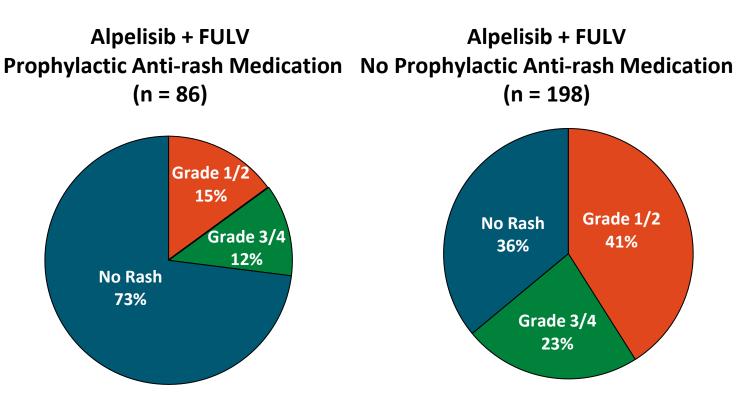
André. NEJM. 2019;380:1929. Andre. ESMO 2018. Abstr LBA3_PR.

Ē

Slide credit: clinicaloptions.com

Before Initiating Alpelisib: Considerations

Baseline glucose	Plan for glucose monitoring after
Assess FPG and A1C before initiating treatment with alpelisib • Optimize blood glucose before initiating alpelisib	treatment initiation Monitor fasting glucose: • At least weekly during the first 2 wks • Then at least every 4 wks and as clinically indicated Monitor A1C: • Every 3 mos and as clinically indicated
Dav ²⁹ Mo 2	Mo 3
/Diabetic Patients*[1]	
	le changes related to exercise and take, as appropriate
	initiating treatment with alpelisib • Optimize blood glucose before initiating alpelisib Daw ²⁹ Mo 2 /Diabetic Patients*[1] Counsel patients on lifesty

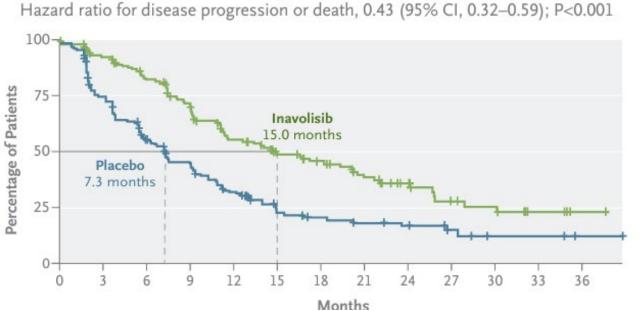

*SOLAR-1 excluded patients with type 1 diabetes or uncontrolled type 2 diabetes. At baseline in alpelisib arm, 56% of patients were prediabetic (FPG 5.6 to < 7.0 mmol/L and A1C 5.7% to < 6.5%) and 4% were diabetic (FPG \ge 7.0 mmol/L or A1C \ge 6.5%).^[2,3]

1. Alpelisib PI. 2. Rugo. Ann Oncol. 2020; [Epub]. 3. André. NEJM. 2019; 380:1929.

Slide credit: <u>clinicaloptions.com</u>

Understanding and Modifying Toxicity Associated With Alpelisib

- For patients who received alpelisib + FULV, antihistamine prophylaxis markedly reduced rash
 - Of patients who received anti-rash prophylaxis
 - 69.8% received antihistamines
 - Rash occurred in 26.7%
 with prophylaxis and 64.1%
 without
 - Grade 3/4 reduced by 50%

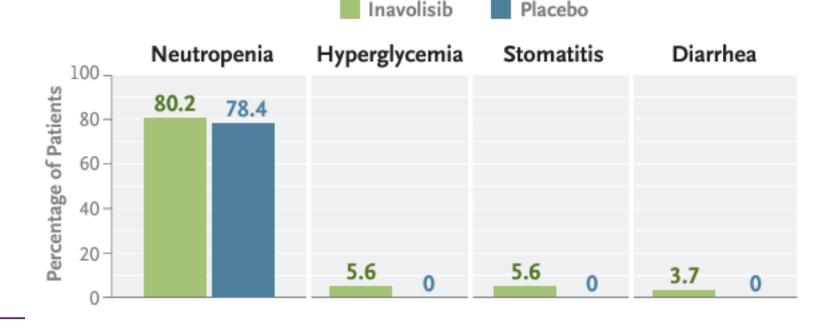


Ę

First-line inavolisib/placebo + palbociclib + fulvestrant in pts with PIK3CA-mutated, HR (+), HER2 (-) locally advanced/metastatic breast cancer who relapsed during/within 12 months (mo) of adjuvant endocrine therapy completion

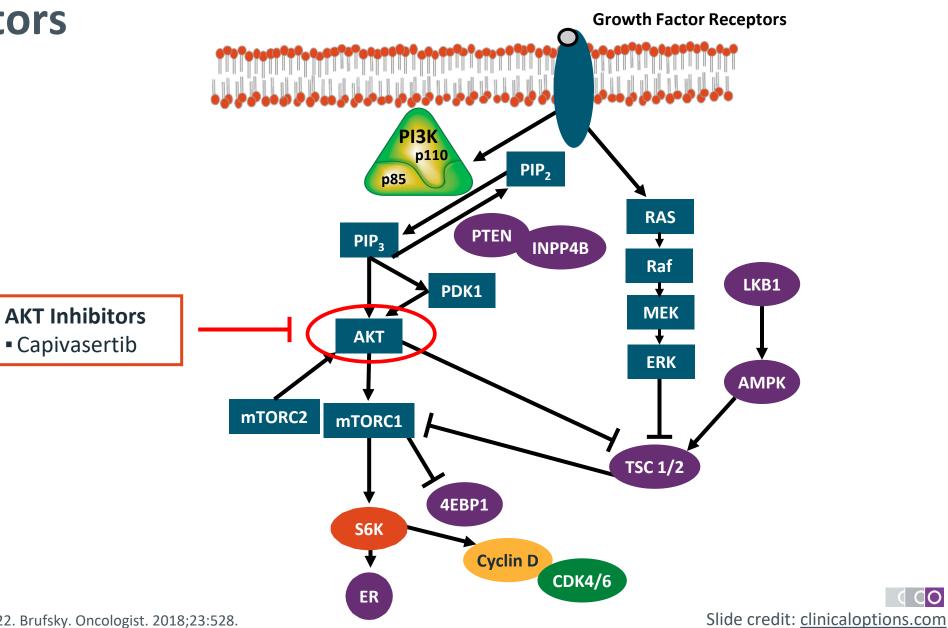
- 325 pts (palbociclib at 125 mg qd on d1-21 of each cycle and fulvestrant at 500 mg on day 1, 15 followed by once q 4 wks. 50% > 3 organ sites (nearly half had liver involvement, with approximately 40% lung involvement
 - inavolisib at 9 mg daily (n = 161)
 - a matched placebo (n = 164)

- ORR (58% vs 25%)
- Median PFS (15.0 months vs 7.3 months (Hazard ratio 0.43, p < 0.0001.
- Median DOR (18.4 vs 9.6 months)
- ADR : ≥20%
 - laboratory abnormalities, decreased neutrophils, hemoglobin, platelets ↑ fasting glucose, stomatitis, diarrhea, decreased calcium, fatigue, ↓ K, Na, Mg , ↑ creatinine, ALT, rash



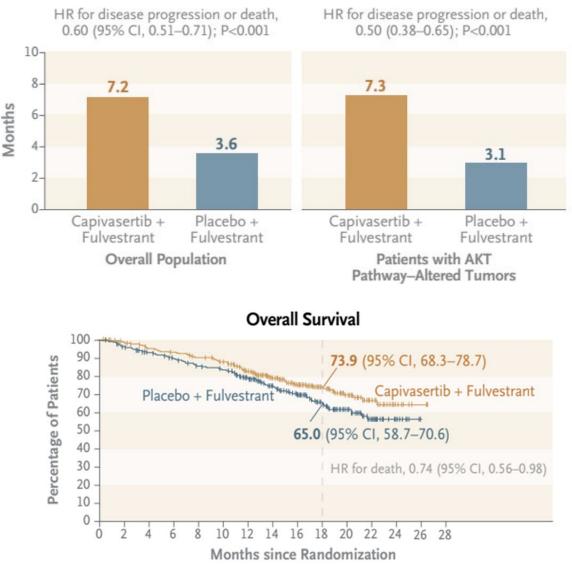
Median Progression-free Survival

LIMITATIONS AND REMAINING QUESTIONS


- Only one of the three approved cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, palbociclib.
- A study is currently evaluating the efficacy and safety of ribociclib or abemaciclib in combination with inavolisib and fulvestrant in patients with metastatic or locally advanced breast cancer.
- The efficacy of inavolisib with palbociclib plus fulvestrant in patients with previous exposure to CDK4/6 inhibitors is unknown.

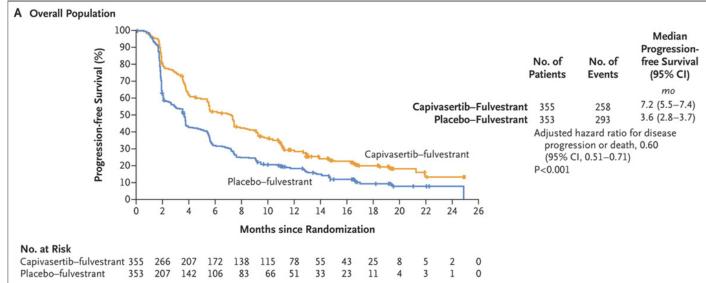
The incidence of grade 3 or 4 neutropenia was similar in the two groups

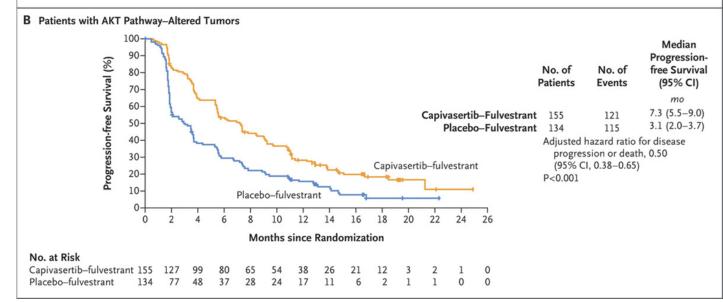
NEJM 2024;391:1584-96.


AKT Inhibitors

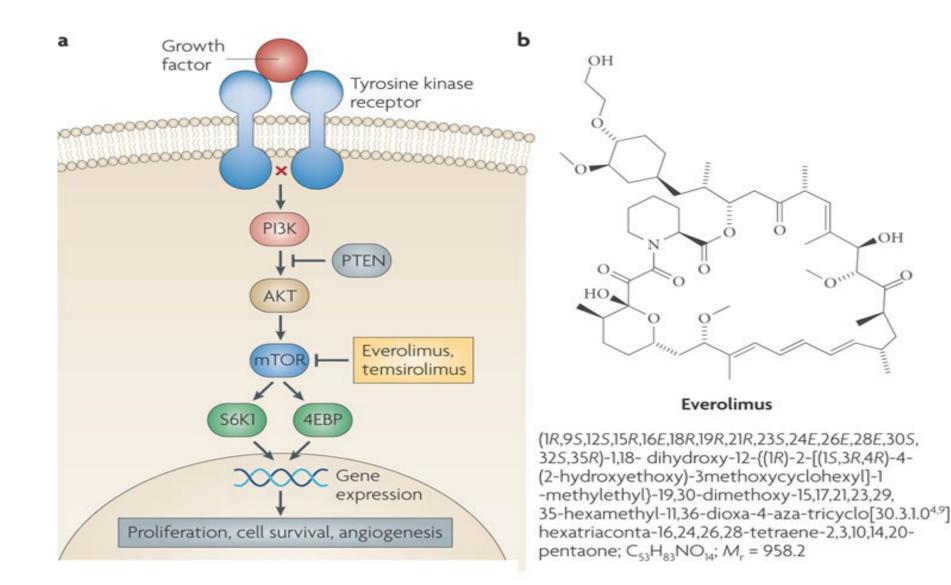
Brufsky. Cancer Treat Rev. 2017;59:22. Brufsky. Oncologist. 2018;23:528.

Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer Median Progression-free Survival

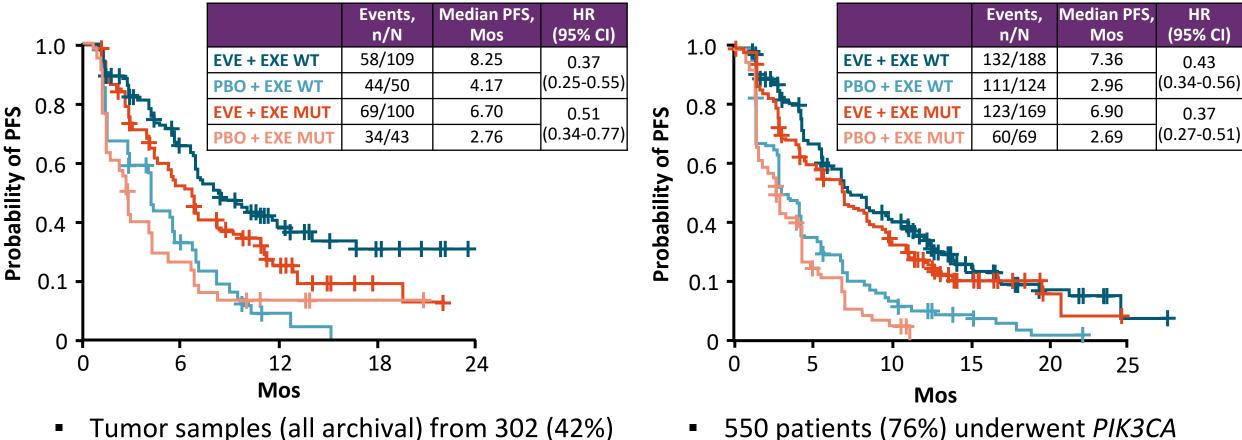

- HR(+), HER2(-), disease progression after first-line treatment with endocrine therapy, with or without CDK4/6 inhibitors.
- Intervention: 708 women or men
 - oral capivasertib (400 mg bid for 4 days, followed by 3 days off) plus IM fulvestrant (500 mg q 14 days for the first three injections and every 28 days thereafter) VS matching placebo plus fulvestrant.
- PFS, AKT pathway–altered tumors, overall survival.



Capivasertib in Hormone Receptor–Positive Advanced


Breast Cancer

- Efficacy: PFS was significantly longer with capivasertib plus fulvestrant than with placebo plus fulvestrant, both in the overall population and among patients with AKT pathway– altered tumors.
- Safety: capivasertib, diarrhea hyperglycemia, and rash were the most common adverse events, occurring in 72.4% and 38.0% of patients, respectively


mTOR: is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs).

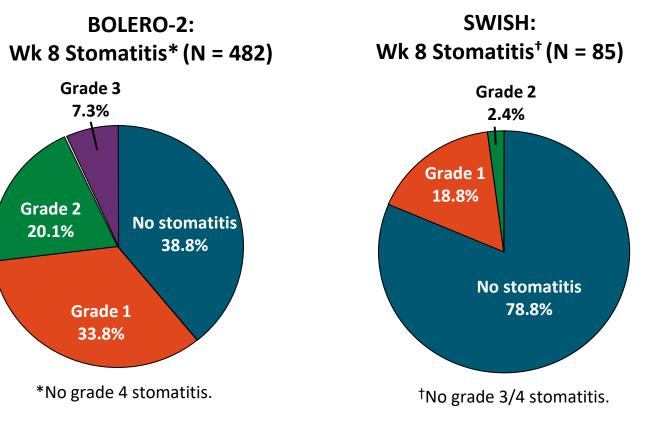
BOLERO-2: PFS by PIK3CA Mutational Status

PFS by PIK3CA Mutation Status in Tumor Tissue^[1]

PFS by PIK3CA Mutation Status in cfDNA^[2]

 Tumor samples (all archival) from 302 (42%) patients had NGS data available for evaluation

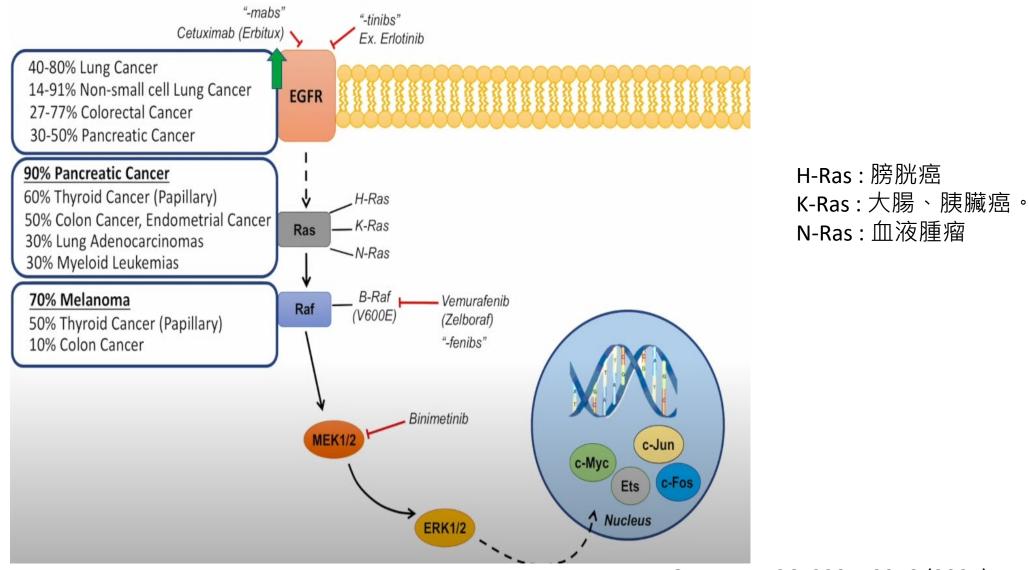
1. Hortobagyi. J Clin Oncol. 2016;34:419. 2. Moynahan. Br J Cancer. 2017;116:726.


No prior CDK4/6i exposure

cfDNA analysis

Understanding and Modifying Toxicity Associated With Everolimus

- Understanding timelines and mechanism (to some degree) helps develop effective prophylactic and management strategies for toxicity
- Phase II SWISH trial: steroid mouthwash[‡] essentially eliminated stomatitis in postmenopausal patients with HR+/HER2- MBC receiving everolimus + exemestane
 - Grade ≥ 2 stomatitis was 2.4%
 (n = 2) by 8 wks in SWISH vs 27.4%
 by 8 wks in BOLERO-2 (primary endpoint) and 33% over total study duration

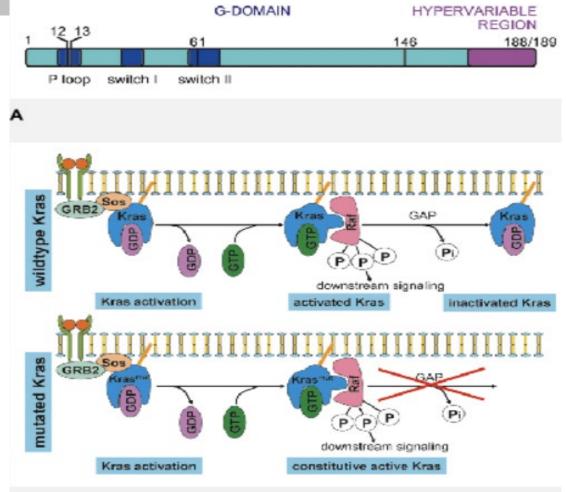


[‡]Dosing: 10 mL alcohol-free dexamethasone 0.5 mg per 5 mL oral solution. Swish for 2 min then spit. Repeat 4x per day for 8 wks.

The PI3K-AKT-mTOR Inhibition: Summary

- α-specific inhibitor, alpelisib, suggests significant improvements in ORR and PFS and now FDA approved for *PIK3CA*m ER+ breast cancer
- Activity of AKT inhibitors with endocrine therapy appears promising from phase 3 data, PFS was significantly longer with capivasertib plus fulvestrant than with fulvestrant alone.
- The addition of everolimus to fulvestrant or exemestane results in a significant improvement in PFS and can be a standard option in patients who progress on CDK4/6 inhibition
- The saga of PI3K inhibitors in haematological malignancies: survival is the ultimate safety endpoint.

The RAS-RAF-MEK-ERK (Mitogen-activated protein kinase pathway)


Oncogene 26, 3291–3310 (2007).

History of The Ras-Raf-MEK-ERK pathway (MAPK pathway)

- Cell signaling pathway (cell division, differentiation, and survival)
- Mutations in this pathway, particularly in the BRAF gene, are implicated in various cancers
- Discovery of Ras proteins (Late 1970s and 1980s): The oncogenes of several retroviruses were identified as homologs of human genes.
 - The Harvey (H-Ras) and Kirsten (K-Ras) rat sarcoma viral oncogenes were discovered.
 - These genes were later found to encode small GTPases, which are central components of the Ras signaling pathway.
- Raf was identified as a cellular protein that associates with Ras (1980). Subsequent work showed that Ras can activate Raf, a kinase that phosphorylates and activates MEK.
- Discovery of MEK and ERK (1990s)
 - MEK as an upstream activator of ERK (extracellular signal-regulated kinase)
 - Three-tiered kinase cascade: Ras activates Raf, which activates MEK, which in turn activates ERK.
- 1990s and 2000s: the regulation of cell proliferation, differentiation, survival, and angiogenesis all critical processes in cancer development and progression. Followed by Drug Development (Late 1990s onwards)

- RAS (Rat Sarcoma)
 - **Function**: RAS proteins are small GTPases that act as molecular switches.
 - Type of mutation : KRAS, NRAS, and HRAS Mutations: common in various cancers, including pancreatic, colorectal, and lung cancers.
 - **RAS Inhibitors**: KRAS G12C inhibitors sotorasib and adagrasib
- RAF (Rapidly Accelerated Fibrosarcoma)
 - Function: RAF kinases (ARAF, BRAF, CRAF) are serine/threonine-specific protein kinases.
 - Type of mutation : **BRAF Mutations**: Particularly the V600E mutation, in melanomas, thyroid and colorectal cancer.
 - RAF Inhibitors: Vemurafenib, dabrafenib, and encorafenib are BRAF inhibitors used in cancers with BRAF V600E mutations.
- MEK (Mitogen-Activated Protein Kinase)
 - **Function**: MEK1 and MEK2 are dual-specificity kinases that phosphorylate ERK on both threonine and tyrosine residues.
 - MEK Inhibitors: Trametinib, Cobimetinib, and Binimetinib are used in combination BRAF inhibitors to target the pathway more effectively.
- ERK (Extracellular Signal-Regulated Kinase)
 - Function: ERK1 and ERK2 (serine/threonine kinases) that regulate various cellular processes. ERK translocates to the
 nucleus to activate transcription factors that promote gene expression.
 - Type of mutation : various cancers, making it a target for therapy.
 - Inhibitors : under development

Protein Mutations in the Ras-Raf Pathway

в

GTPases通過在活性(GTP結合)和非活性(GDP 結合)狀態之間進行循環,充當細胞功能調控 的計時器或開關。

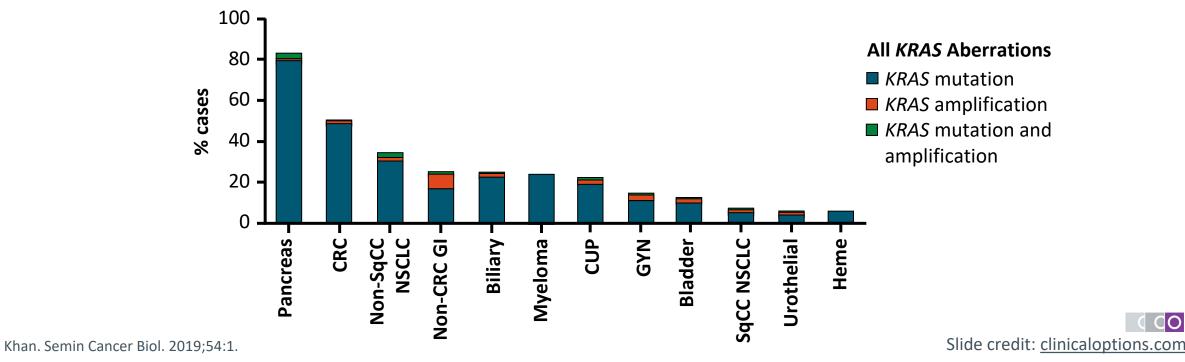
• <u>EGFR</u>

- Overexpression of EGFR
- Increased activation of Ras-Raf-MEK-ERK pathway

• Ras

- Mutated Ras unable to hydrolyze GTP ("On") back to GDP ("Off")
 Permanently Active
- 3 Ras Proteins (H, K, N)
 - Mutations in Codons 12, 13, 59, 61
- <u>H-Ras</u> → Bladder Tumors
- <u>K-Ras</u> → Colon & Pancreas Tumors
- <u>N-Ras</u> → Hematopoeitic Tumors

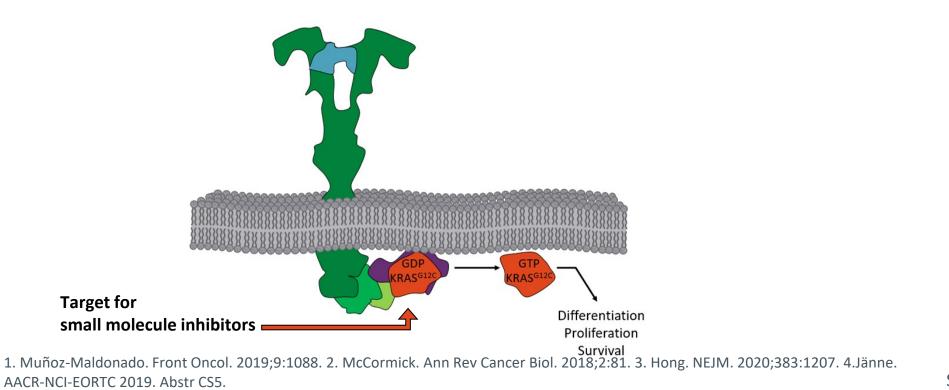
• <u>Raf</u>


- 3 Raf Proteins (A, B, C)
- <u>B-Raf</u> (V600E)
 - Constitutively Active

KRAS in medical history development

- RAS gene family : KRAS, NRAS, and HRAS encode a group of related proteins
 - play a critical role in signal transduction, control cell growth, differentiation, and survival.
- KRAS is located on chromosome 12 in humans.
 - RAF/MEK/ERK and PI3K/AKT/mTOR.
 - Mutations : pancreatic, colorectal, and lung cancers.
- NRAS: is located on chromosome 1 in humans.
 - Like KRAS
 - Mutations: NRAS are common in certain types of leukemia, melanoma, and thyroid cancer.
- HRAS: is located on chromosome 11 in humans.
 - same as KRAS and NRAS.
 - Mutations: HRAS mutations rare. In bladder cancer, head and neck tumors, and some types of skin cancers.

KRAS Mutations in Cancer

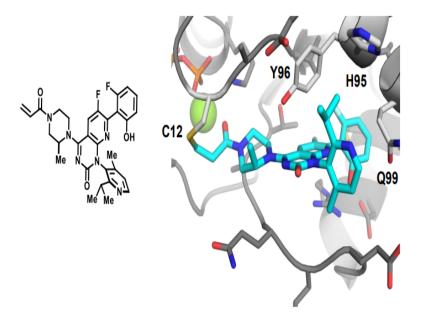

- Approximately 30% of all cancers are associated with a RAS mutation, suggesting that a mutation in RAS oncogenes may be a leading cause of carcinogenesis
 - Of the RAS oncogenes, mutation in KRAS is the most frequent, followed by NRAS and HRAS

Frequency in *KRAS* Aberrations by Tumor Type

KRAS p.G12C Mutation: Background

- GTP-bound KRAS^{G12C} enhances downstream signaling and drives tumor growth^[1,2]
- *KRAS* p.G12C mutation in 13% of NSCLC, and 1% to 3% of CRC and other solid tumors^[3]
- To date, sotorasib (AMG 510) and MRTX849 are the only small molecule inhibitors with known clinical efficacy inhibiting this pathway^[3,4]

Slide credit: <u>clinicaloptions.com</u>


One Step at a Time — Clinical Evidence That KRAS Is Indeed Druggable

- Survival among patients with advanced-stage KRASG12C non-smallcell lung cancer (NSCLC) or colorectal cancer is approximately 1 to 2 years nearly four decades
- RAS has picomolar affinity for guanosine triphosphate (GTP) and intracellular GTP concentrations are exceedingly high, early strategies to find compounds that preferentially bind to the RAS–GTP pocket failed.
- Other strategies have attempted to interfere with RAS activation by preventing its membrane localization or by inhibiting downstream kinase signaling, but these also failed because of resistance stemming from compensatory signaling.
- Shokat and colleagues designed covalent small-molecule inhibitors that irreversibly targeted the cysteine residue at codon 12 of KRAS, locking the protein into an inactive state. This major advance opened the door for a precision-medicine approach to targeting *KRAS*G12Cmutant tumors.
- Sotorasib (AMG510)
- Adagrasib (MRTX849) : a long half-life (23 hours), dose-dependent pharmacokinetics, and central nervous system (CNS) penetration.

Supplementary Figures

Figure S1. Co-crystal Structure of GDP-KRAS^{G12C} Bound by Sotorasib

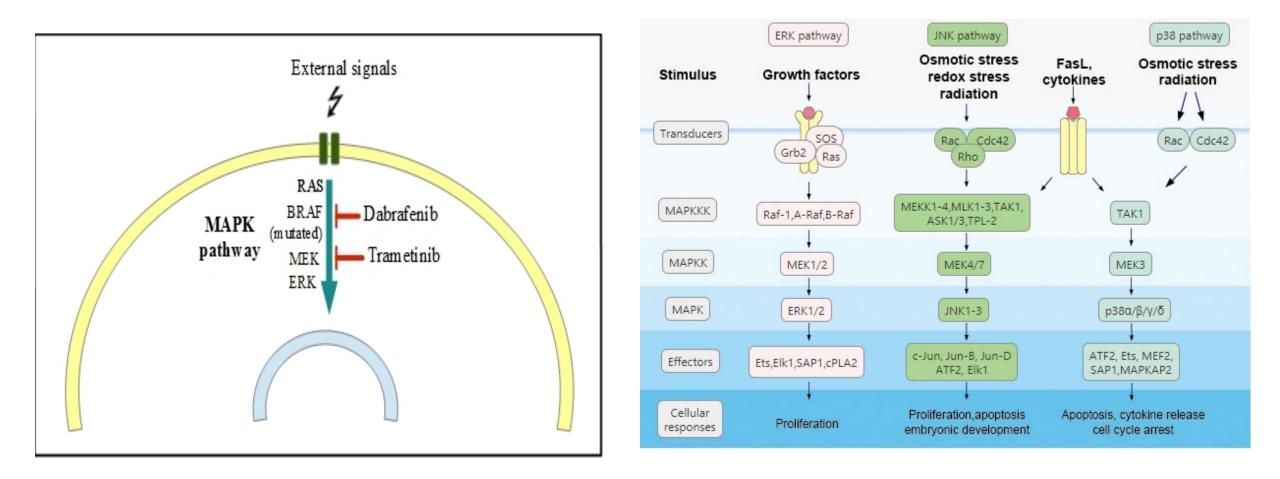
Co-crystal structure of sotorasib bound to GDP-KRAS^{G12C}, confirming covalent bond formation between the acrylamide warhead and C12 and illustrating non-covalent contacts between the isopropylpyridine substituent and the H95/Y96/Q99 cryptic pocket. H95 denotes amino acid of histidine at position 95 of KRAS^{G12C}. Y96 denotes amino acid of tyrosine at position 96 of KRAS^{G12C}. Q99 denotes amino acid of glutamine at position 99 of KRAS^{G12C}. C12 denotes mutated cysteine at position 12.

NEJM 2020; 383:1277-1278

Indication : NSCLC with (KRAS) G12C mutation who have received at least one prior systemic therapy

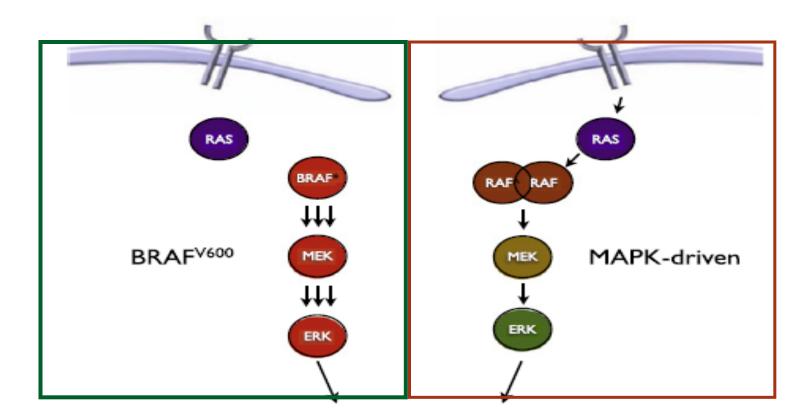
Drug	Trial Name	Indication	Comparativ e Protocol	ORR	PFS (months)	OS	Adverse Events	Source Journal
Sotorasib (CodeBrea K 100)	Pts : 127	KRAS G12C- mutated advanced NSCLC	Single-arm	41%	mDR: 12.3 PFS : 6.3	12.5 months 2-year OS : 33%.	Diarrhea, musculoskeletal pain, nausea, fatigue, hepatotoxicity, cough	<u>J Clin</u> <u>Oncol.</u> 2023 Jun 20; 41(18): 3311– 3317
Sotorasib (CodeBrea K 200)	Pts : 616 KRAS G12C- mutated NSCLC (2nd line)	mutated advanced NSCLC, after previous platinum-based chemotherapy and a PD-1 or PD-L1 inhibitor.	Sotorasib 960mg qd Vs Docetaxel (75 mg/m2 q 3 weeks)	28·1% VS 37·1%)	5.6 vs 4.5 months	10.6 vs 11.3 months (P: 0.53)	Gastrointestinal AEs : diarrhea, hepatic toxicity, musculoskeletal pain, metabolic changes, pneumonia, rash	Lancet . 2023 Mar 4; 401 (10378):733- 746

FDA Indications : 1. Adult with KRAS G12C-mutated locally advanced or metastatic NSCLC at least one prior systemic therapy. 2. plus cetuximab for adults with KRAS G12C-mutated locally advanced or metastatic colorectal cancer (CRC), who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.


Drug	Trial Name	Indication	Comparati ve Protocol	ORR	PFS (months)	OS	Adverse Events	Source Journal
Adagrasib	KRYSTAL-1 Pts : 116	KRAS G12C- mutated NSCLC treated with platinum-based chemotherapy and anti–PD1 or PDL1	600mg q12 (Single- arm)	48%	6.5 months	12.6 months	Nausea, diarrhea, fatigue, vomiting, hepatotoxicity, rash, abdominal pain	NEJM 2022;3 87:120-131
Adagrasib	KRYSTAL-1 (Pts: 76)	KRAS G12C- mutated heavily pretreated patients with metastatic colorectal cancer	Cetuximab +Agagrasib vs Agagrasib	46% vs 19%	6.9 vs 5.6 months	13.4 vs 19.8 months	Rash, nausea, diarrhea, vomiting, fatigue, musculoskeletal pain, hepatotoxicity, headache, dry skin, abdominal pain, decreased appetite, edema	NEJM 2023;388:4 4-54
Adagrasib	KRYSTAL-1 (Pts : 94)		Adagrasib (600 mg twice daily) plus cetuximab.	ORR 34%, disease control rate : 85%	6.9 months	15.9 months		Cancer Discov. 2024 Apr 8;14(6):982 –993

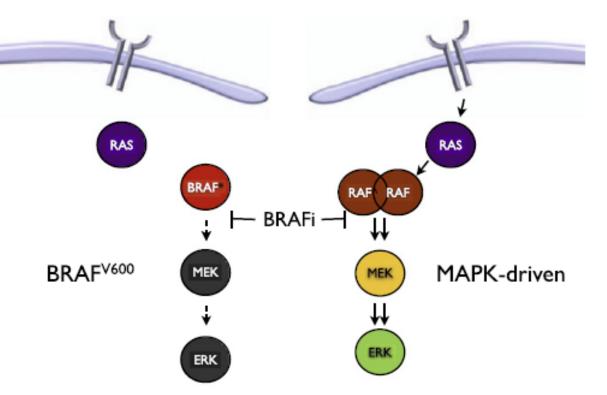
Targeted drugs

- Ras-Raf-MEK-ERK
 - Raf inhibitors : Vemurafenib, Dabrafenib, Ecorafenib
 - for BRAF-mutated melanomas.
 - MEK inhibitors : Trametinib, Binimetinib, Cobimetinib
 - -clinical use in conjunction with Raf inhibitors or other therapies.
 - ERK inhibitors : under investigation in clinical trials.
- Issues with Resistance
 - Resistance mechanisms often emerged, limiting their long-term efficacy.
 - Strategies combining multiple inhibitors to overcome resistance.


MAPK pathway

(Mitogen-activated protein kinase, 絲裂原活化蛋白激酶)

Oncogene 26, 3291–3310 (2007).


Mitogen-activated protein kinase (MAPK, 絲裂原活化蛋白激酶) pathway

Growth, cell cycle upregulation, anti-apoptosis, angiogenesis, metabolic regulation, immune suppression

Fig. 1. Differential Signalling: Oncogenic (left) versus Canonical (right)

BRAF inhibitors

- Vemurafenib
- Dabrafenib
- Encorafenib

Fig. 2. The BRAF inhibitor paradox - BRAF inhibitors inhibit the MAPK pathway in BRAF mutant cells but activate the pathway in cells driven by the MAPK pathway other than through oncogenic BRAF mutation.

Trial Name (Pts Number)	Indication	Comparative Protocol	ORR	PFS (months)	OS (months)	Adverse Events	Source of Journal
COMBI-v (N=704)	Unresectable or metastatic melanoma with BRAF V600E or V600K mutations	Dabrafenib + Trametinib vs. Vemurafenib	64% vs. 51%	11.4 vs. 7.3 months	25.6 vs. 18.0 months	Fever, fatigue, nausea, vomiting, rash	N Engl J Med, 2015
COLUMBUS	Unresectable or metastatic melanoma with BRAF V600E or V600K mutations	Encorafenib + Binimetinib vs. Vemurafenib	63% vs. 40%	14.9 vs. 7.3 months		Fatigue, nausea, diarrhea, vomiting, rash	Lancet Oncol, 2018
	Metastatic colorectal cancer with BRAF V600E mutation	Encorafenib + Cetuximab vs. Standard of Care	126% VS 2%		M 5 VS 5 M	Fatigue, nausea, diarrhea, abdominal pain	N Engl J Med, 2019
	Neurofibromatosis type 1 (NF1) with symptomatic, inoperable plexiform neurofibromas	Selumetinib vs. placebo	68% vs.0%	Not applicable (due to durable responses and stable disease in majority)	Not reported	Nausea, vomiting, diarrhea, fatigue, acneiform rash	N Engl J Med, 2020

MEK inhibitor (BRAF V600E, BRA V600K mutation)

- Trametinib : melanoma, Non-small cell lung cancer, thyroid)
- Bininmetinib : colorectal, melanoma
- Cobimetinib :melanoma
- Selumetinib : Neurofibromatosis type 1
 - can reduce the size of plexiform neurofibromas (叢 狀神經纖維瘤), improving quality of life for patients, especially in cases where surgery is not feasible.

MEK inhibitor :Selumetinib

Neurofibromatosis type 1

Trial Name	Study Patient Number	Indication	Comparative ORR	Comparative Overall Survival	Adverse Events	Source of Journal
SPRINT (NCT01362803)	50 pediatric patients	Inoperable plexiform neurofibromas in Neurofibromatosi s Type 1 (NF1)	. ,	OS not mature (long-term follow- up ongoing)	Most common: diarrhea, rash, nausea, vomiting, and fatigue. Serious: Cardiac dysfunction	Gross AM, et al. New England Journal of Medicine, 2020

Summary of The RAS-RAF-MEK-ERK Pathway

- Focus on genetic mutations (e.g., KRAS, BRAF), leading to precision medicine approaches.
- Improved Outcomes: improved OS and PFS compared to standard chemotherapy.
- Reduced Side Effects: fewer systemic side effects.
- Combination Potential: Drugs from this pathway are often combined (e.g., RAF + MEK inhibitors) to maximize benefits and overcome resistance.

Thank you for listening

