BTK Inhibitors in CLL and Lymphomas: Overview and Current Indications

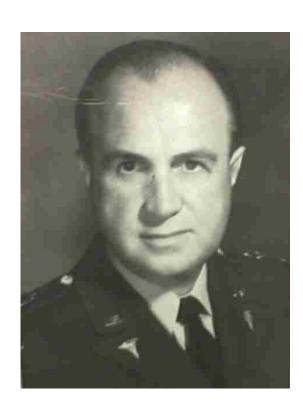
IMBRUVICA® (Ibrutinib)億珂® 膠囊 CALQUENCE (Acalabrutinib)克瘤康膠囊 BRUKINSA® (Zanubrutinib)百悅澤®

Capsules Capsules Capsules |brubuinca Imbrufinca[®] Brukinsa* burstertit Zaniuri Waldenclar's Tyrour Kinlib Panubrutniib Macrablullema Capsules Capsules Maproulina BTK Capsule Zausula BTK BTK

Lo quence

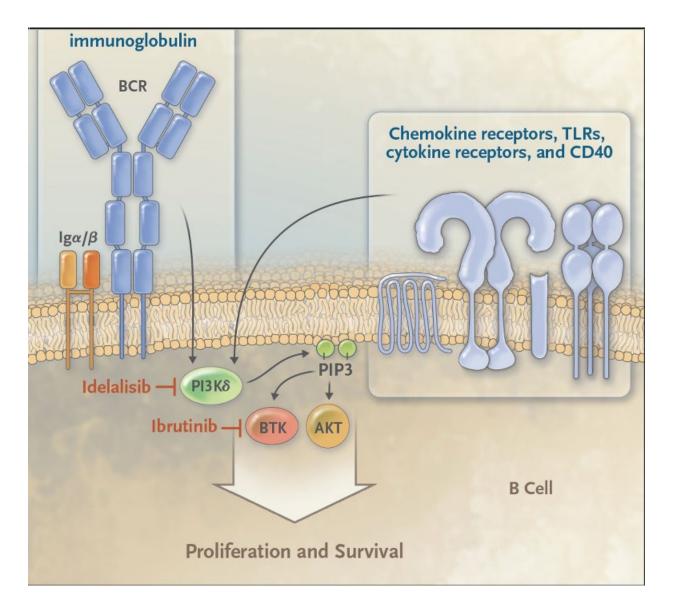
Imbruvica°

Clinical pharmacist: Lihua Fang


2024/11/27

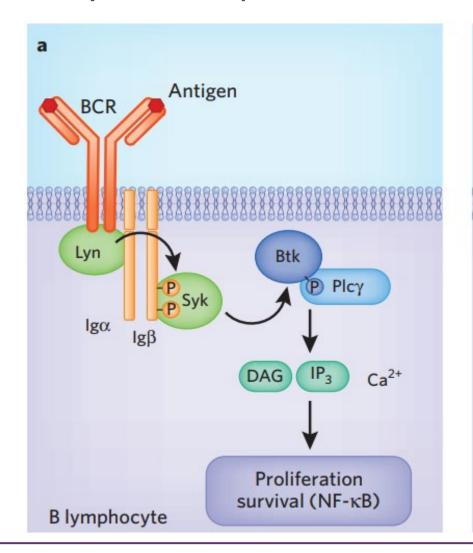
Outline

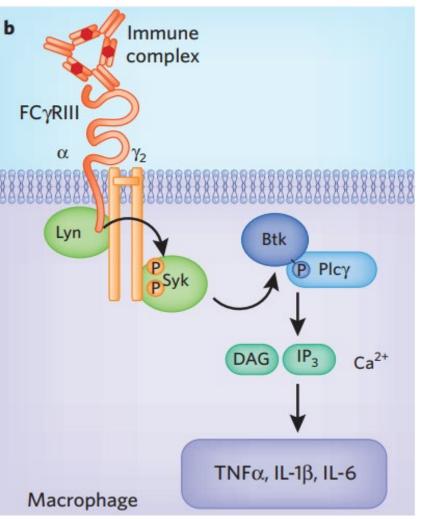
- BTK 治療歷史 (History of Bruton's tyrosine kinase)
- Role in Cancer treatment (Type of cancer, Driven gene, role of treatment)
- Drug mechanism
- Indication
 - Clinical measurement
 - Followed up : Lab data
 - Drug studies and comparison (ORR, OS)
 - ADR
- Side effect management
- Education
- Conclusion



Ogden Bruton: Bruton's Agammaglobulinemia

- Chief of Pediatrics at Walter Reed National Military Medical Center
- Described "a hitherto unrecognized entity manifested by complete absence of gamma globulin with otherwise normal serum proteins and recurrent pneumococcal sepsis is described in an 8-yr-old male"
- The causal genetic defect has since been mapped to the gene for Bruton's tyrosine kinase (BTK), at band Xq21.3
 - BTK plays a crucial role in B-cell maturation, but when mutated can result in the immunodeficiency disorder XLA
- Patients with XLA have normal pre—B-cell populations in their bone marrow but these cells fail to mature and enter the circulation

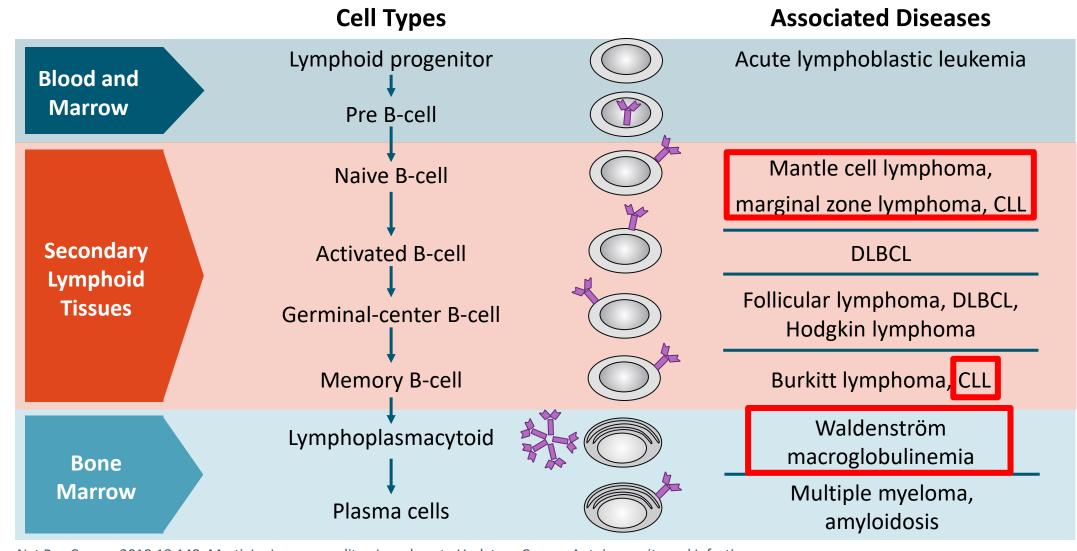

A PI3Kδ Inhibitor for B-Cell Cancers Idelalisib



B 細胞受體 (BCR) 訊號傳導會活化 磷酸肌醇 3- 激酶 (PI3K),產生第 二信使磷酸肌醇 3,4,5- 三磷酸酯 (PIP3), 進而活化布魯頓酪氨酸激 酶 (BTK) 和 AKT,AKT 是一種可結 合 PIP3 的促生存激酶,在許多實 體腫瘤中扮演關鍵角色。 Idelalisib 是 PI3K δ 異構型的選擇 性抑制劑,針對惡性 B 細胞中 BCR 下游的信號轉導,而 ibrutinib 則針對 BTK。PI3K 和 BTK 也會在 B 細胞上許多其他受體的下游被活 化,包括 CD40、細胞激素受體、 化學因子受體和 toll-like 受體 (TLR)。BCR 由與 Igα 和 Igβ 兩種訊 號鏈相關的抗體重鏈和輕鏈組成

Bruton's tyrosine kinase (Btk): cytoplasmic protein tyrosine kinases and is expressed in many hematopoietic cell lineages. Dual mechanism of action:

- (i) inhibition of BCR-dependent B cell proliferation and autoantibody production
- (ii) suppression of myeloid cell-dependent inflammatory cytokine production



BTK Inhibition Targets Both Adaptive and Innate Drivers of Immune-Mediated Disease

T-Cells	B-Cells, Plasma Cells	Monocytes, Macrophages	Mast Cells, Basophils	Neutrophils
No effect	Blocks B-cell receptor Inhibits plasma cell differentiation and antibody production	Blocks IgG-mediated FcgR activation, phagocytosis, inflammatory mediators	Blocks IgE-mediated FceR activation and degranulation	Inhibits activation, adhesion, recruitment, and oxidative burst
	BTK Inhibition			
Ada	aptive	BTK	BTK BTK Innate	BTK

B-Cell Malignancies: Cell Types and Associated Diseases

Burger. Nat Rev Cancer. 2018;18:148. Marti. In: Isvoranu, editor. Lymphocyte Updates - Cancer, Autoimmunity and Infection. 2017. NCI. Adult ALL treatment (PDQ®). NCI. Adult NHL treatment (PDQ®). NCI. Adult HL treatment (PDQ®). NCI. Plasma cell neoplasms (including multiple myeloma) treatment (PDQ®).

BTK

Slide credit: clinicaloptions.com

BTK in B-Cell Malignancies

- The BCR pathway plays a role in the growth, proliferation, and survival of normal and malignant B-cells
- BTK an essential enzyme in the BCR signaling pathway; downstream of BCR
- Inhibition of BTK can lead to the downstream mitigation of cell growth, proliferation, adhesion, migration, and survival of malignant B-cells
- BTK inhibitors approved in multiple lymphoma settings: CLL, MCL and MZL, and Waldenström macroglobulinemia

Indications for Available BTK Inhibitors

Ibrutinib

Adults with **MCL** treated with ≥1 prior tx

Adults with **CLL/SLL** with or without 17p deletion

Adults with **Waldenström** macroglobulinemia

Adults with **MZL** requiring systemic tx and treated with ≥1 prior anti–CD20-based tx

Adults with **chronic GVHD** after failure of ≥1 lines of systemic tx

Acalabrutinib

Adults with **MCL** treated with ≥1 prior tx

Adults with **CLL/SLL**

Zanubrutinib

Adult with CLL or SLL

R/R Follicular lymphoma (in combination with obinutuzumab) ≥2 lines of systemic therapy.

Adult with R/R Mantle cell lymphoma treated with ≥ 1 prior tx

Adult with R/R MZL treated with ≥ 1 Anti-CD20 base Tx

Adult with Waldenström macroglobulinemia

Mechanisms of Action and Properties of Approved BTK Inhibitors

Ibrutinib ¹	Acalabrutinib ²⁻⁴	Zanubrutinib⁵
First-generation BTK inhibitor	Second-generation BTK inhibitor	Second-generation BTK inhibitor
 Potent and irreversible 	Highly selective, potent, irreversible	Highly selective, potent, irreversible
 Approved: CLL/SLL ± del(17p) WM MCL with ≥ 1 prior therapy MZL in patients who require systemic tx and had ≥1 CD20-targeted tx Chronic GVHD 	Approved: ■ MCL with ≥1 prior therapy ■ CLL/SLL	 Approved: MCL with ≥1 prior therapy Adult with R/R MZL treated with ≥ 1 Anti-CD20 base Tx CLL/SLL WM
 Once-daily dosing 420 mg PO daily for CLL/SLL, WM 560 mg PO daily for MCL, MZL 	 Twice-daily dosing 100 mg PO q12h for MCL, CLL/SLL 	 Once-daily dosing – 320 mg PO daily for MCL Twice-daily dosing – 160 mg PO q12h for MCL

Current Treatment Landscape in CLL

First-line
Treatment
Options

No del(17p)/TP53 mutations

FCR (IGHV mutated and <65 yrs/fit)

Ibrutinib

Acalabrutinib obinutuzumab

Venetoclax + obinutuzumab

With del(17p)/TP53 mutations

Ibrutinib

Acalabrutinib 2 obinutuzumab

Venetociax + obinutuzumab

Second-line Treatment Options

With or without del(17p)/TP53 mutations

Ibrutinib

Acalabrutinib

Venetociax + rituximab

Idelalisib + rituximab

Duvelisib

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- Chemotherapy and Chemoimmunotherapy
 - Alkylating Agents: chlorambucil and cyclophosphamide
 - Fludarabine-Based Regimens: In the 1990s, fludarabine superior efficacy over chlorambucil. Fludarabine with cyclophosphamide (FC),
 - Chemoimmunotherapy (FCR): The addition of rituximab, fludarabine and cyclophosphamide (FCR) (high response rates and prolonged remissions)
- Monoclonal Antibodies (anti-CD20 monoclonal antibody)
 - Rituximab: as backbone for combination regimens.
 - Newer anti-CD20 antibodies : Ofatumumab and Obinutuzumab

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- BTK Inhibitors (Bruton's tyrosine kinase inhibitor)
 - The introduction of ibrutinib in the 2010s marked a shift to targeted therapies for CLL.
 - Remarkable efficacy in relapsed or refractory CLL and significantly improved PFS and OS, especially in del(17p) and TP53 mutations.
 - However, long-term use was associated with cardiovascular side effects.
 - Second-Generation BTK Inhibitors: Acalabrutinib and Zanubrutinib (similar efficacy to ibrutinib but with reduced toxicity)
- BCL-2 Inhibitors
 - Venetoclax: targets the anti-apoptotic protein BCL-2, which is overexpressed in CLL. (
 high efficacy in combination with anti-CD20 antibodies in del(17p) or TP53 mutations)
 - Deep remissions and are used as a finite-duration (有限) treatment, allowing for treatment-free periods after therapy completion

The development of treatment for chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL)

- PI3K Inhibitors
 - Another targeted option with relapsed/refractory CLL. often combined with rituximab, showed efficacy in heavily pretreated patients. However, the risk of immune-mediated side effects has limited their use in favor of BTK and BCL-2 inhibitors

Current Treatment Landscape in Mantle Cell Lymphoma

First-line
Treatment
Options

Aggressive Chemotherapy

R-DHAP (cisplatin, carboplatin or oxaliplatin)
R-CHOP/R-DHAP
NORDIC (maxi-CHOP/R + HD cytarabine)

Consolidation and Maintenance

 $HDT + ASCT \rightarrow R$ maint for 3 yrs

Chemoimmunotherapy

Less Aggressive Chemotherapy

BR

VR-CAP

R-CHOP

Lenalidomide + R

Maintenance

After R-CHOP: R maint until PD

Ibrutinib

Acalabrutinib

Zanubrutinib

Lenalidomide ± R

Venetoclax (off-label)

Second-line Treatment Options

Marginal Zone Lymphoma and Waldenström Macroglobulinemia: A Brief Overview

Marginal Zone Lymphoma

- Rare diseases with a heterogeneous clinical presentation
 - Extranodal MZL of the MALT is the most common (~70% of MZLs)
 - Splenic MZL (~20% of MZLs)
 - Given their rarity, it is often difficult to conduct clinical trials specifically designed for patients with MZL
 - Ibrutinib and Zanubrutinib safety,
 efficacy has been established

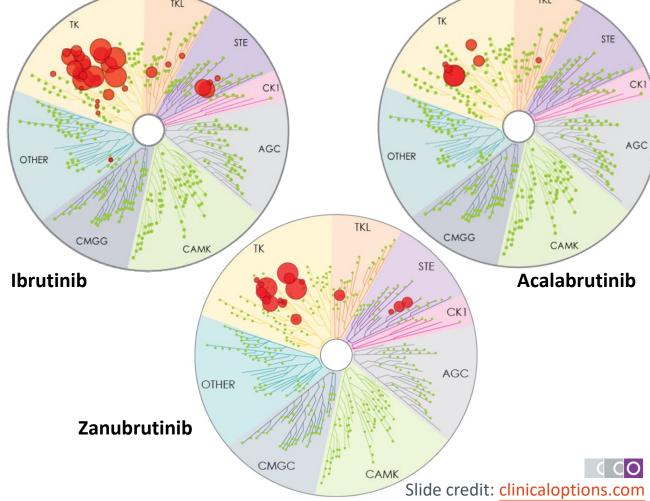
Waldenström Macroglobulinemia

- Indolent lymphoplasmacytic infiltrate in bone marrow and IgM paraprotein in serum
 - Ibrutinib has demonstrated efficacy as monotherapy for rituximab-resistant cases, especially with MYD88 mutations
 - Trend toward improved responses and less toxicity with Zanubrutinib

Dosing and Administration of BTK Inhibitors in CLL

	Ibrutinib ^[a]	Acalabrutinib ^[b]	Zanubrutinib ^[c,d]
Dosing	420 mg orally once daily	100 mg orally twice daily	160 mg orally twice daily or 320 mg orally once daily
Half-life	4 to 6 hours	1 hour	2 to 4 hours
Median T _{max}	1 to 2 hours	0.9 hours	2 hours
BTK occupancy	90% up to 24 hours after doses of 2.5 mg/kg/d	≥ 95% over 12 hours after 100 mg every 12 hours	100% up to 24 hours at total daily dose of 320 mg
Dose forms and strengths	Capsules: 70 mg, 140 mg Tablets: 140 mg, 280 mg, 420 mg, 560 mg	Capsules: 100 mg	Capsules: 80 mg
Renal impairment	No adjustment	No adjustment	No adjustment
Hepatic Impairment Child-Pugh Class A (mild) Child-Pugh Class B (moderate) Child-Pugh Class C (severe)	140 mg daily 70 mg daily Avoid use	No adjustment No adjustment Avoid use	No adjustment No adjustment 80 mg twice daily

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa™ (zanubrutinib) [PI]. 2019; d. NCCN. CLL/SLL. Version 4.2021.

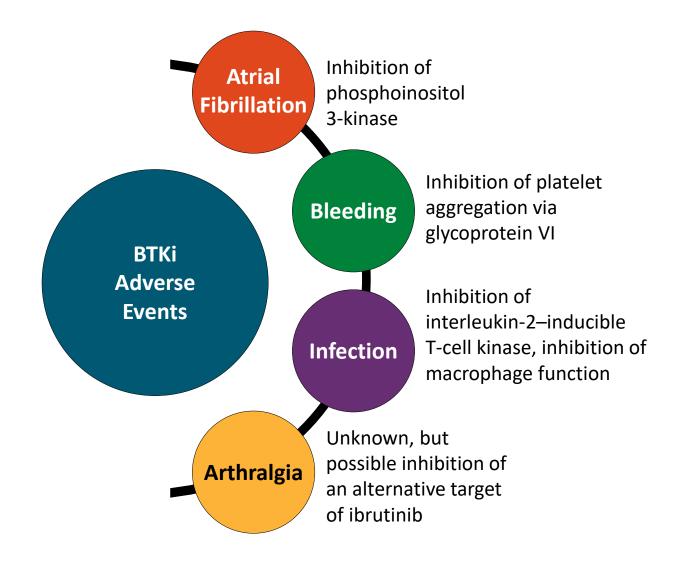

Kinase Selectivity of BTK Inhibitors

IC₅₀/EC₅₀ (nM) (Inhibitory Concentration 50%)/(Effective Concentration 50%):

Kinase	Ibrutinib	Acalabrutinib	Zanubrutinib
ВТК	1.5	5.1	0.5
TEC	10	126	44
ITK	4.9	>1000	50
BMX	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5

Kinase Selectivity Profiling at 1 μmol/L (in vitro)

Larger red circles represent stronger inhibition

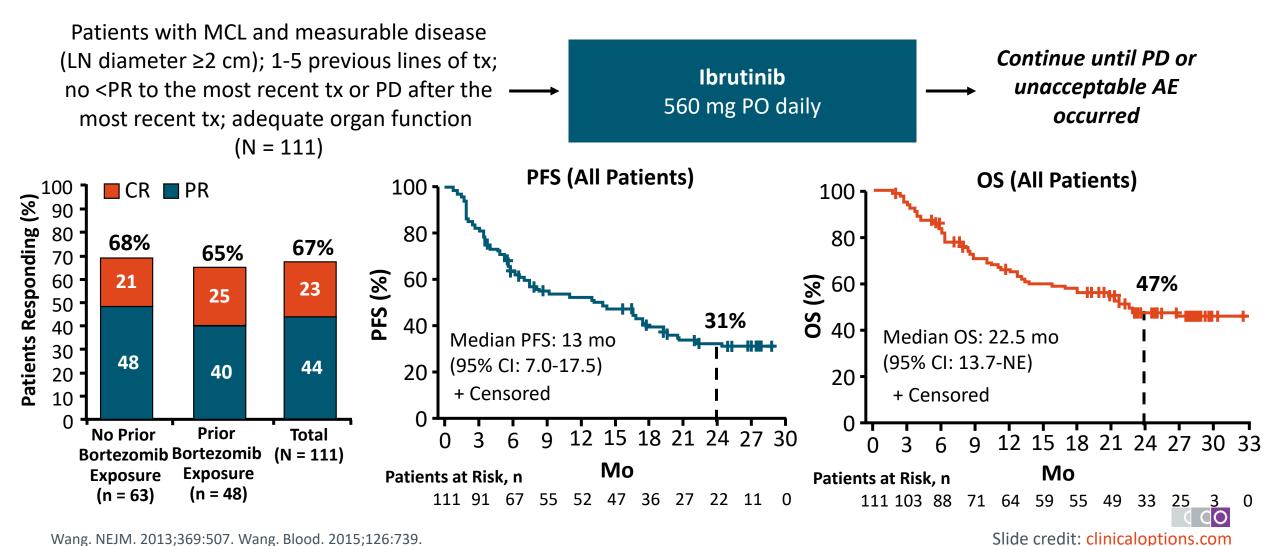


Kaptein. ASH 2018. Abstr 1871.

Potential Effects Due to Off-Target Inhibition

TEC kinase ITK kinase BTK kinase BMX kinase Platelet effects[a,b] Platelet effects[a,b] Cardiac toxicity[a] Antibody-dependent cellular cytotoxicity[a] **Tyrosine-protein Bone Marrow** kinase expressed Interleukin-2tyrosine kinase on chromosome X. in hepatocellular inducible T-cell carcinoma. kinase EGFR kinase JAK3 kinase ERBB4 kinase **BLK** kinase Rash[c] Cardiac toxicity^[a,d] Immune effects[a] Cardiac toxicity^[d] Diarrhea^[c]

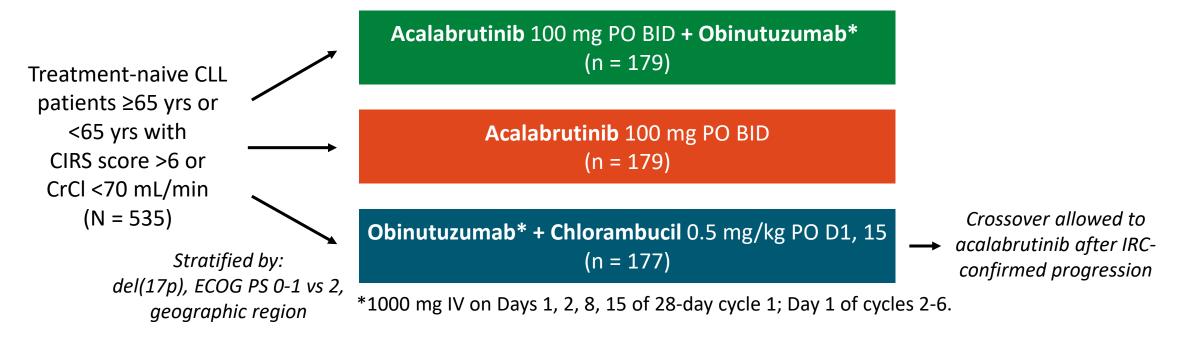
Potential Mechanisms of Off-Target Inhibition



Ibrutinib by Janssen Biotech, Inc. and Pharmacyclics LLC, an AbbVie company: Summary of Trials Supporting Approvals

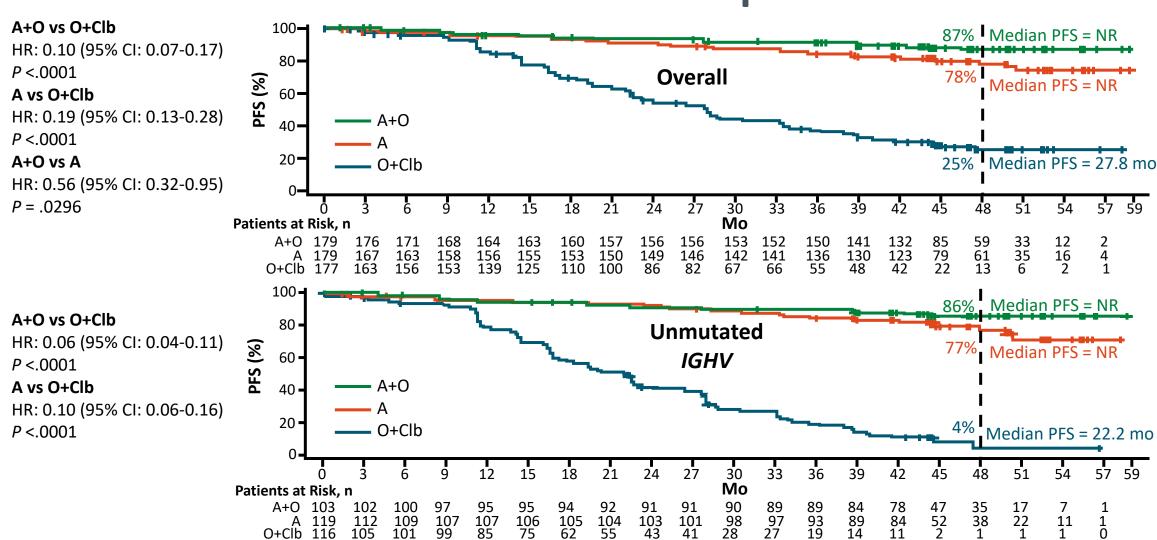
CLL	MCL	MZL	WM
Approved in frontline and relapsed/refractory settings, various studies ALLIANCE (A041202): First-line BR vs ibrutinib ± rituximab in CLL/SLL¹ Phase III E1912: Ibrutinib + rituximab vs FCR in patients ≤70 yrs with previously treated CLL/SLL² Phase III RESONATE 2:	Approval based on phase II PCYC-1104 trial of previously treated patients with relapsed or refractory MCL ⁴	Approval based on open-label phase II study in previously treated patients. Single-agent ibrutinib induced durable remissions (ORR: 58%) with a favorable benefit—risk profile. Inhibition of BCR signaling with ibrutinib provides a treatment option without	Evaluated in both the frontline and relapsed/refractory settings ⁶ Median follow-up: 59 mo ORR: 90.5% Major response rate: 79.4%
ibrutinib in older patients with treatment- naive CLL/SLL ³		hemotherapy for an MZL population with high unmet need	

Phase II PCYC-1104: Targeting BTK With Ibrutinib in Relapsed/Refractory Mantle Cell Lymphoma


Acalabrutinib (by AstraZeneca): Key Studies

CLL	MCL
Phase III ELEVATE-TN: acalabrutinib ± obinutuzumab in patients with treatment-naive CLL ¹	Phase II ACE-LY-004 trial: open-label, single arm study of acalabrutinib in relapsed/refractory MCL ⁴
Phase III ASCEND: head-to-head study of 2 small-molecule inhibitors, idelalisib and acalabrutinib, plus BR or rituximab ²	
Phase III ELEVATE RR: head-to-head study of acalabrutinib and ibrutinib ³	

Phase III ELEVATE-TN: Acalabrutinib ± Obinutuzumab vs Chlorambucil + Obinutuzumab in Treatment-Naive CLL

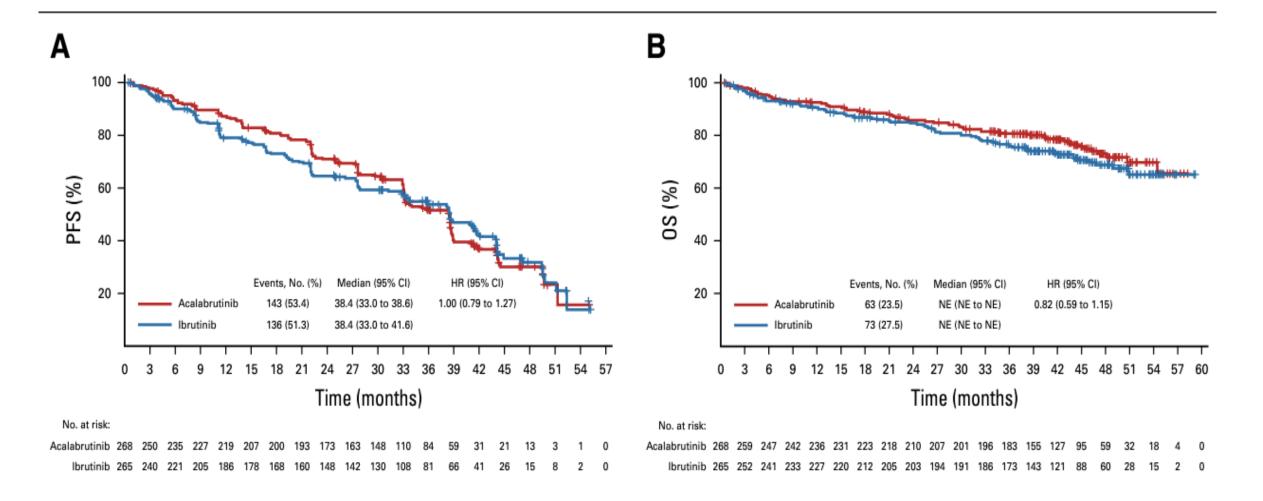


- Primary endpoint: PFS by IRC of acalabrutinib + obinutuzumab vs obinutuzumab + chlorambucil
- Key secondary endpoints: PFS of acalabrutinib vs obinutuzumab + chlorambucil,
 ORR by IRC and investigators, time to next treatment, OS, safety

otions com

員

ELEVATE-TN: PFS With 4-Yr Follow-up


Acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial

Randomized, open-label, phase III noninferiority trial

Stratified by del(17p) (yes vs no), ECOG PS (0/1 vs 2), number of prior therapies (1-3 vs \geq 4) Adults with previously treated CLL requiring Acalabrutinib 100 mg PO BID treatment per iwCLL 2008; (n = 268)presence of del(17p) or Continued until PD or 1:1 del(11q); no significant CV unacceptable toxicity disease; no prior tx with Ibrutinib 420 mg PO QD BTK, PI3K, Syk, or BCL2 (n = 265)inhibitors; ECOG PS 0-2 (N = 533)

- Primary endpoint: noninferiority of IRC-assessed PFS (upper bound of 2-sided 95% CI for HR <1.429)
- Secondary endpoints: any-grade atrial fibrillation/flutter, grade ≥3 infection, Richter transformation,
 OS

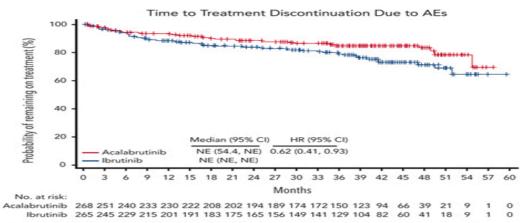
ELEVATE-RR: PFS Noninferiority met on PFS and OS

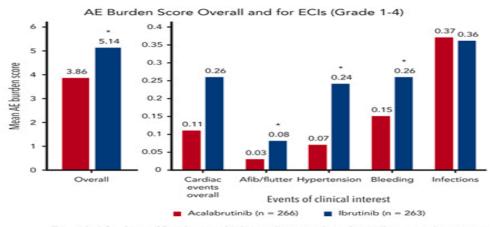
Detailed Safety Profile of Acalabrutinib vs Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia in the ELEVATE-RR trial

Patients
Previously treated
CLL (N = 533)

Randomized 1:1 Acalabrutinib PO 100 mg BID n = 266 treated OR PO 420 mg QD n = 263 treated Secondary Safety Analysis

- Exposure-adjusted incidence rates in events per 100 person-months
- Subgroup analyses for ECIs: age, number of prior lines of therapy, prior history of event, AE management
- AE burden score: considers AE duration, recurrence, and grade weighting of the AE in a single score

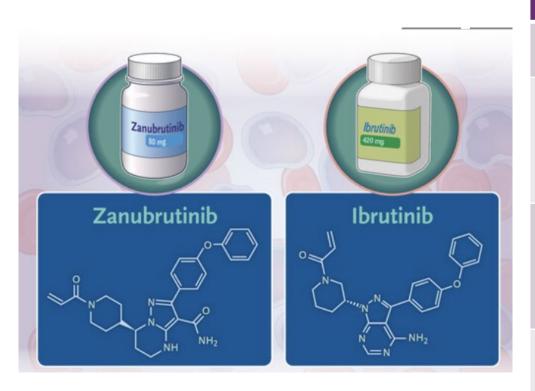

Median time on study


40.9 months

Exposure-adjusted Incidence

- Diarrhea, arthralgia, UTI, back pain, muscle spasms, and dyspepsia incidence rates were 1.5- to 4.1-fold higher with ibrutinib
- Headache and cough incidence rates were 1.6- and 1.2-fold higher, respectively, with acalabrutinib
- Afib/flutter, hypertension, and bleeding incidence rates were 1.6- to 2.8-fold higher with ibrutinib

AE, adverse event; Afib/flutter, atrial fibrillation/atrial flutter; BID, twice daily; CI, confidence interval; CLL, chronic lymphocytic leukemia; ECI, event of clinical interest; HR, hazard ratio; NE, not estimable; PO, orally; QD, once daily; UTI, urinary tract infection.


*Two-sided P-value < .05 without multiplicity adjustment based on Wilcoxon rank-sum test. P-value compares difference in overall distribution rather than mean score.

Conclusions:

- 1) Event-based analyses and AE burden scores demonstrated higher AE burden both overall and specifically for afib/flutter, hypertension, and hemorrhage with ibrutinib vs acalabrutinib
- 2) AE for which both event-based outcomes and AE burden scores were higher with acalabrutinib was limited to headache

Blood Visual Abstract

Seymour et al. DOI: 10.1182/blood.2022018818

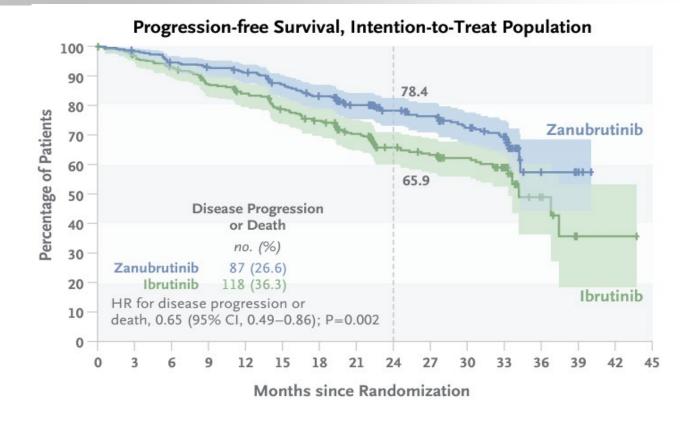
Zanubrutinib indication (百濟神州(BeiGene)

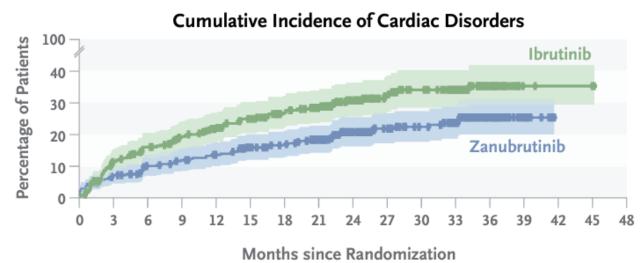
Adult with CLL or SLL

R/R Follicular lymphoma (in combination with obinutuzumab) ≥2 lines of systemic therapy.

Adult with R/R Mantle cell lymphoma treated with ≥ 1 prior tx

Adult with R/R MZL treated with ≥ 1 Anti-CD20 base Tx

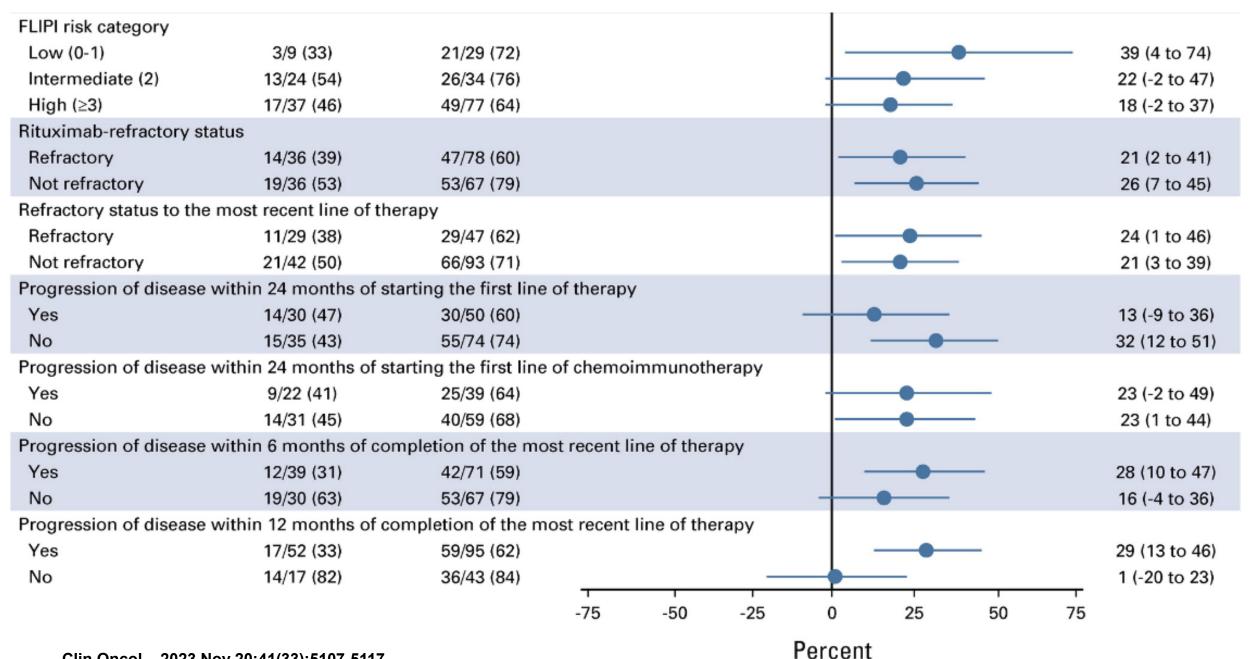

Adult with Waldenström macroglobulinemia


Zanubrutinib or Ibrutinib in Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL)

Design: phase 3, open-label, randomized, controlled trial compared the efficacy and safety of zanubrutinib vs ibrutinib in patients with R/R CLL or SLL.

Pts: 652 adults with R/R at least one previous line of therapy

Drugs: zanubrutinib (160 mg twice daily) or ibrutinib (420 mg once daily) until the occurrence of disease progression or unacceptable toxic effects.


ROSEWOOD: A Phase II Randomized Study Zanubrutinib Plus Obinutuzumab Vs Obinutuzumab in Patients With R/R Follicular Lymphoma

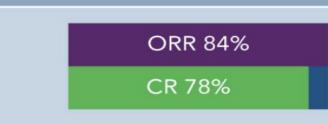
- Patients with R/R FL who had received ≥2 lines of therapy, including an anti-CD20 antibody and an alkylating agent.
- Pt (ZO, 145; O, 72), 2:1 to receive ZO or obinutuzumab (O).
- Results
 - Median study follow-up: 20.2 months.
 - ORR: 69% (ZO) vs 46% (O; P = .001), 18 months DOR: 69% (ZO) vs 42%
 - CR: 39% (ZO) Vs 19% (O)
 - Median PFS: 28.0 months (ZO) vs 10.4 months (O; hazard ratio, 0.50; P < .001).
- ADR: thrombocytopenia, neutropenia, diarrhea, and fatigue; incidences of atrial fibrillation and major hemorrhage were 3% and 1%, respectively.

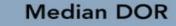
Clin Oncol . 2023 Nov 20;41(33):5107-5117.

	Response/	Patients (%)		
Subgroup	0	ZO		Risk Difference, % (95% CI)
All patients in ITT	33/72 (46)	100/145 (69)		23 (9 to 37)
Age, years				
<65	14/32 (44)	58/83 (70)		26 (6 to 46)
≥65	19/40 (48)	42/62 (68)		20 (1 to 40)
<75	30/60 (50)	89/130 (68)	-	18 (4 to 33)
≥75	3/12 (25)	11/15 (73)		48 (15 to 82)
Sex				
Male	14/33 (42)	53/75 (71)		28 (9 to 48)
Female	19/39 (49)	47/70 (67)		18 (-1 to 38)
Geographic region				
China	5/12 (42)	15/21 (71)		- 30 (-4 to 64)
Ex-China	28/60 (47)	85/124 (69)		22 (7 to 37)
Previous lines of therapy				
2-3	27/54 (50)	77/108 (71)		21 (6 to 37)
>3	6/18 (33)	23/37 (62)		29 (2 to 56)
Baseline ECOG PS				
0	17/31 (55)	64/86 (74)		20 (0 to 39)
≥1	16/41 (39)	36/59 (61)		22 (3 to 41)
Bulky disease: any target	lesion longest diam	neter ≥5 cm		
Yes	15/31 (48)	31/57 (54)		6 (-16 to 28)
No	18/41 (44)	69/88 (78)		35 (17 to 52)
Bulky disease: any target	lesion longest dian			
Yes	3/12 (25)	11/23 (48)		23 (-9 to 55)
No	30/60 (50)	89/122 (73)		23 (8 to 38)
Bulky disease: any target lesion longest diameter ≥10 cm				
Yes	0/6 (0)	1/5 (20)	-	20 (-15 to 55)
No	33/66 (50)	99/140 (71)		21 (7 to 35)

Clin Oncol . 2023 Nov 20;41(33):5107-5117.

Zanubrutinib in relapsed/refractory mantle cell lymphoma: long-term efficacy and safety results from a phase 2 study (FDA approved in 2019)



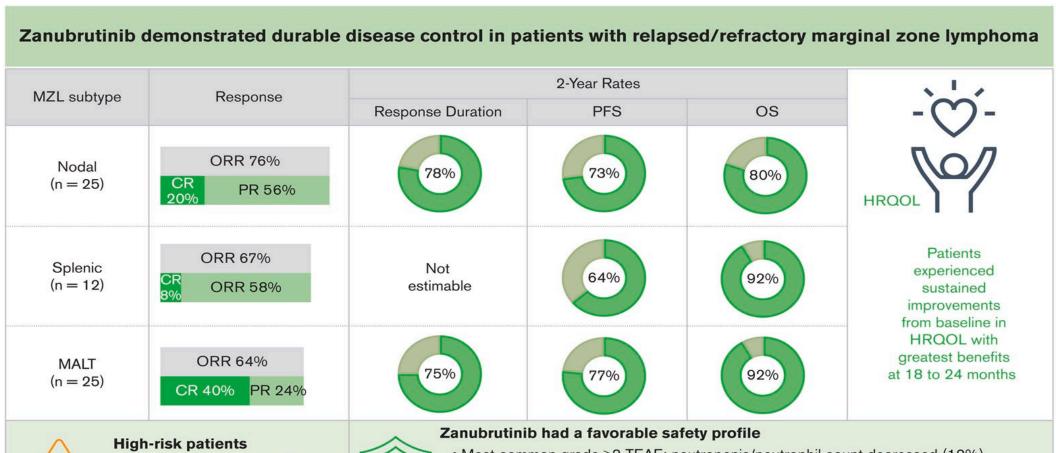

Phase 2

Patients with R/R MCL

Median follow-up
35.3 months

Not reached (95% CI: 24.9 months to NE)

OS


Zanubrutinib was well tolerated

- Few discontinuations (9.3%) due to AEs
- Majority of AEs: low-grade severity
- No atrial fibrillation/flutter
- No second primary malignancies

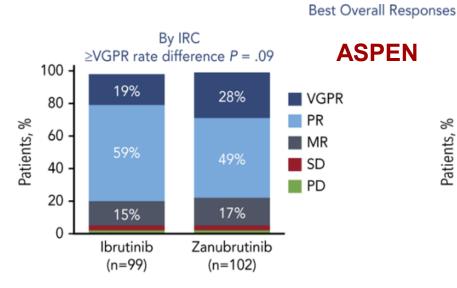
Blood (2022) 139 (21): 3148– 3158.

AEs adverse events; CR complete response; DOR duration of response; MCL mantle cell lymphoma; NE not estimable; ORR overall response rate; OS overall survival; PFS progression-free survival; R/R relapsed/refractory.

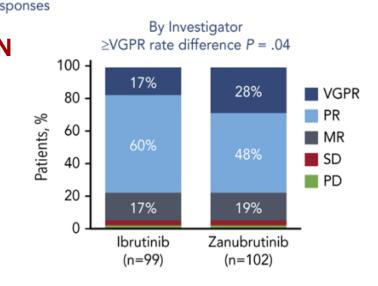
Safety and efficacy of zanubrutinib in relapsed/refractory marginal zone lymphoma: final analysis of the MAGNOLIA study

- Stage III/IV disease: 87%
- Bulky (>5 cm) disease: 37%
- Age ≥75 years: 28%

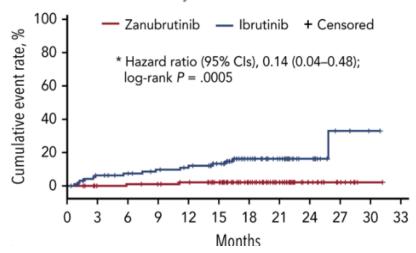
- Most common grade ≥3 TEAE: neutropenia/neutrophil count decreased (12%)
- Cardiac TEAEs (any grade) uncommon: atrial fibrillation/flutter (3%), hypertension (4%)
- Grade ≥3 bleeding: 1 patient
- · No new safety signals observed


Clin Cancer Res . 2021 Dec 1;27(23):6323-6332

Blood Adv (2023) 7 (22): 6801–6811.


Zanubrutinib in Waldenström Macroglobulinemia

- FDA approved in 2019 for the treatment of relapsed/refractory MCL after at least 1 prior therapy¹
- Approval based on the results of an open-label, single-arm phase II trial showing high and durable ORR and CR rates with good tolerability²
- Zanubrutinib noninferior to ibrutinib in Waldenström macroglobulinemia in phase III ASPEN study³
 - Trend toward improved responses and less toxicity with zanubrutinib



All Grades		
lbrutinib (n=98)	Zanubrutinib (n=101)	
15 (15.3)	2 (2.0)	
31 (31.6)	21 (20.8)	
58 (59.2)	49 (48.5)	
9 (9.2)	6 (5.9)	
17 (17.3)	11 (10.9)	
13 (13.3)	30 (29.7)	
66 (67.3)	67 (66.3)	
	Ibrutinib (n=98) 15 (15.3) 31 (31.6) 58 (59.2) 9 (9.2) 17 (17.3) 13 (13.3)	

Time-to-event analysis of atrial fibrillation/flutter events

Adverse Events Associated With BTK Inhibitors in CLL

Patients With Any Grade AEs, %	BTK Inhibitor (as Monotherapy or in Combination)			
	Ibrutinib (in CLL clinical trials)	Acalabrutinib (in CLL clinical trials)	Zanubrutinib (in MCL clinical trials)†	
Atrial fibrillation or flutter	5-7	3.6-5	2	
Hemorrhage	19-31	16-20	11	
Diarrhea	34-59	18-39	23	
Arthralgias	16-41	8-22	14	
Musculoskeletal pain*	25-61	15-37	14	
Hypertension	11-42	3.2-5	12	
Rash	21-49	18-25	36	
Headache	12-40	9-26	4.2	
Infection (grade ≥ 3)	1-12	14-22	0-10	

^{*}Includes myalgias.

[†]Zanubrutinib is not currently FDA-approved for the treatment of CLL, and data from zanubrutinib in CLL clinical trials is not published.

a. Imbruvica (ibrutinib) [PI]. 2020; b. Calquence (acalabrutinib) [PI]. 2019; c. Brukinsa (zanubrutinib) [PI]. 2019.

Adverse Events of Available BTK Inhibitors: Cytopenias, Infection, Bruising and Hemorrhage, Lymphocytosis

Ibrutinib

Cytopenias (Grade 3/4)

- Neutropenia 13% to 29%
- Thrombocytopenia 5% to 17%
- Anemia 0% to 13%

Infection (Grade 3-5)

■ 14% to 29% of patients

Bruising and Hemorrhage

- Bleeding consistent with "hemostatic failure" with bruising and subcutaneous bleeding with minor trauma in up to 50%
- Grade ≥3 hemorrhage: up to 6%

Lymphocytosis

Up to 77% of patients

Acalabrutinib

Cytopenias (Grade 3/4)

- Neutropenia 10% to 23%
- Thrombocytopenia 5% to 8%
- Anemia 5% to 11%

Infection (Grade 3-5)

■ 11% to 18% of patients

Bruising and Hemorrhage

- Overall, bleeding events including bruising and petechiae of any grade occurred in approximately 30% of patients
- Grade ≥3 hemorrhage: up to 3%

Lymphocytosis

26% of patients

Zanubrutinib

Cytopenias (Grade 3/4)

- Neutropenia 26%
- Thrombocytopenia 11%
- Anemia 8%

Infection (Grade 3-5)

27% of patients

Bruising and Hemorrhage

- Any-grade hemorrhage: 35%
- Grade ≥3 hemorrhage: 3.4%

Lymphocytosis

■ 41% of patients

Adverse Events of Available BTK Inhibitors: GI, Musculoskeletal, and Other Common AEs

Ibrutinib

Gastrointestinal

- Diarrhea 34% to 63% (up to 5% grade ≥3)
- Nausea 21% to 31% (2% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 21% to 37% of patients (up to 6% grade ≥3)

Other Common AEs

- Rash 22% to 27% (up to 3% grade ≥3)
- Fatigue 21% to 41% (up to 5% grade ≥3)
- Headache 13% to 19% (up to 2% grade ≥3)

Acalabrutinib

Gastrointestinal

- Diarrhea 18% to 35% (up to 1.3% grade ≥3)
- Nausea 22% (0% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 16% to 23% of patients (1.1% grade ≥3)

Other Common AEs

- Rash 25% (<1% grade 3)
- Fatigue 15% to 23% (up to 1.9% grade ≥3)
- Headache 22% to 39% (up to 1.1% grade ≥3)

Zanubrutinib

Gastrointestinal

- Diarrhea 22% to 23% (0.8% to 3% grade 3)
- Nausea 13% to 18% (0% grade ≥3)

Musculoskeletal

- Includes pain, arthralgias, myalgias
- 14% to 45% of patients (1.1% to 9% grade ≥3)

Other Common AEs

- Rash 21% to 36% (0% grade ≥3)
- Fatigue 21% to 31% (1% to 2.3% grade ≥3)
- Headache 4.2% to 18% (1% grade ≥3)

Adverse Events of Available BTK Inhibitors: Hypertension, Atrial Fibrillation, and Cardiac Arrhythmias

Ibrutinib

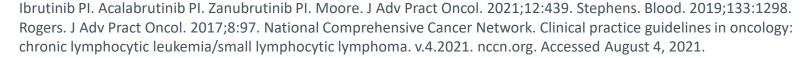
- Hypertension up to 19%
- Incidence of atrial fibrillation:
 - MCL: 11%
 - CLL: 5% (8% all cardiac dysfunction)
 - WM: 2% (7% all cardiac dysfunction)

Acalabrutinib

- Hypertension up to 5%
- Incidence of atrial fibrillation:
 - MCL: 0% (8% other cardiac dysfunction)
 - CLL: 3%
 - WM: 5%

Zanubrutinib

- Hypertension 12% to 14%
- Atrial fibrillation and atrial flutter have occurred in 2.8% (grade ≥3: 0.8%)


BTK Inhibitor AE Management: Bleeding and Infections

Hemorrhage/Bleeding

- Increased risk of bleeding on concomitant anticoagulant or antiplatelet therapy
- Manage low-grade bleeding with supportive care
- Manage significant bleeding by holding BTK inhibitor, consider platelet transfusion
- Consider risks and benefits of withholding for 3-7 days before and after surgery
- Requires initial and ongoing patient education

Infections

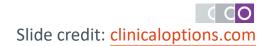
- Cases of progressive multifocal leukoencephalopathy, P jirovecii pneumonia, herpes simplex virus, hepatitis B reactivation have occurred
- Immunocompromise or long-term corticosteroid use increases risk; consider prophylaxis
- Monitor and evaluate patients for fever and infections; treat appropriately
- No standard guidelines/ recommendations for antimicrobial prophylaxis

BTK Inhibitor AE Management: Lymphocytosis, Headache, Rash, and Second Primary Malignancies

Lymphocytosis

 Presents in initial few weeks of therapy, typically resolves within 2 mo

Headache


- Typically low grade, observed early in therapy, and resolves over 1-2 mo
- Generally well managed with analgesics (eg, acetaminophen, caffeine supplements)
- More frequent with acalabrutinib
- Avoid NSAIDs due to increased risk of bleeding

Rash

- May be asymptomatic petechial, or palpable, eruptive pruritic rash with pustules
- Eruptive rash management: topical antihistamines, corticosteroids
- Severe cases may require oral antihistamines or corticosteroids, plus dose interruption or reduction

Second primary malignancies

- Most common: skin cancer
- Advise protection from sun exposure, and encourage regular cancer screening

Risk Factors for Developing Atrial Fibrillation

- Hypertension
- Heart failure
- Diabetes mellitus
- Age
- Obesity
- Excess alcohol consumption
- Valvular heart disease, murmur

- COPD
- Hyperthyroidism
- Obstructive sleep apnea
- Chronic kidney disease
- Acute infections

- Careful history and assessment—numerous risk score calculators
- 2. Optimize modifiable factors
- 3. Reassess on regular basis
- 4. Educate patient and caregivers

BTK Inhibitors: Cardiovascular Adverse Event Management

Atrial fibrillation/flutter

- Regularly monitor for cardiac arrythmias;
 ECG if symptoms develop (eg, palpitations, lightheadedness, syncope, chest pain) or new-onset dyspnea
- Cardiology comanagement recommended
- Not an absolute indication to discontinue
 BTK inhibitors
- Use anticoagulation with caution
- Manage cardiac arrythmias as appropriate
- For persistent atrial fibrillation, consider dose modification

Hypertension

- Document baseline blood pressure
- Monitor for new/ uncontrolled hypertension
- Initiate hypertensives as needed
- New or worsening hypertension increases risk of major cardiovascular events

BTK Inhibitors: Musculoskeletal Adverse Event Management

Arthralgias/Myalgias

- Usually occur early in treatment course
- Consider acetaminophen or short course of prednisone
- Anti-inflammatory agents (eg, ibuprofen) should be avoided to minimize bleeding
- Transition to selective BTK inhibitor can diminish or resolve arthralgias and myalgias

Other Musculoskeletal AEs

- Musculoskeletal pain
- Muscle spasms
- Treat like arthralgias and myalgias

Drug-Drug Interactions of BTK Inhibitors

Dose Modification Recommendations

	Ibrutinib ^[a]	Acalabrutinib ^[b]	Zanubrutinib ^[c]
Moderate CYP3A4 inhibitor	280 mg daily	100 mg daily	80 mg twice daily
Voriconazole 200 mg twice daily Posaconazole suspension 100 mg once daily, 100 mg twice daily, or 200 mg twice daily	140 mg daily	_	80 mg daily
Posaconazole suspension 200 mg TID or 400 mg twice daily Posaconazole IV 300 mg once daily Posaconazole delayed-release tablets 300 mg once daily	70 mg daily	_	80 mg daily
Other strong CYP3A4 inhibitors	Avoid use; if	short-term (≤ 7 days) in	terrupt treatment
Strong CYP3A4 inducers	Avoid use	Avoid use; if unable 200 mg twice daily	Avoid use

Impact on AEs and Treatment Efficacy

- CYP3A4 inducers (eg, rifampin) and inhibitors (eg, itraconazole)
 - Medications
 - Herbal supplements
 - Foods
- P-gp substrates
- PPIs, H2-receptor antagonists, and antacids

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa™ (zanubrutinib) [PI]. 2019.

Concurrent Medications With Overlapping Toxicities

May Increase Likelihood of Complications and Impact Ability to Stay on BTK Inhibitor Therapy

Anticoagulants ^[a-c]	 DOACs LMWH Warfarin (contraindicated in patients with blood dyscrasias) 	
Antiplatelets ^[a-c]	 Aspirin P2Y12 receptor blockers NSAIDs SSRIs 	
Atrial fibrillation ^[a-c]	 Verapamil Diltiazem Amiodarone Digoxin 	
Infection ^[a-c]	Azole antifungals	
Arthralgia, myalgia, headache ^[a-c]	NSAIDs Aspirin-containing products	
GI toxicity ^[a-c]	PPIsH2RAsAntacids	
OTC products and supplements	 Vitamin E^[d] Fish oil^[d] Flaxseed oil 	

a. Imbruvica® (ibrutinib) [PI]. 2020; b. Calquence® (acalabrutinib) [PI]. 2019; c. Brukinsa™ (zanubrutinib) [PI]. 2019; d. Lipsky A, et al. Hematology Am Soc Hematol Educ Program. 2020;2020:336-345.

Recommendations to Reduce Drug-Food Interactions With BTK Inhibitors

BTK Inhibitor	How Supplied	Recommended Dosage and Administration
Acalabrutinib	100-mg capsules	 100 mg orally twice daily Can be taken with or without food Advise patients to swallow capsules whole with water
Ibrutinib	Capsules: 70 mg, 140 mg Tablets: 140 mg, 280 mg, 420 mg	 Advise patients to swallow capsules whole with water Do not cut, crush, or chew the tablets The administration of ibrutinib with a high-fat and high-calorie meal increased ibrutinib C_{max} by 2- to 4-fold and AUC by approximately 2-fold, compared with administration of ibrutinib after overnight fasting
Zanubrutinib	80-mg capsules	 160 mg twice daily or 320 mg once daily Can be taken with or without food Advise patients to swallow capsules whole with water

BTK Inhibitor Drug-Drug Interactions

Dosing Recommendation by Inhibitors/Inducers	Ibrutinib	Acalabrutinib	Zanubrutinib
Strong CYP3A inhibitor	 Avoid concomitant use Dose modification is recommended If strong inhibitor intended for short-term use (eg, up to 7 days as anti-infectives), hold ibrutinib 	 Avoid concomitant use Dose modification is recommended If strong inhibitor intended for short-term use (eg, up to 7 days as anti-infectives), hold acalabrutinib 	 80 mg once daily Interrupt dose as recommended for adverse reactions
Moderate CYP3A inhibitor	280 mg once daily	■ 100 mg once daily	80 mg twice dailyModify dose as recommended for adverse reactions
Strong CYP3A inducer	Avoid concomitant use	 Avoid concomitant use If inducers can not be avoided, increase acalabrutinib dose to 200 mg every 12 hr 	Avoid concomitant use
Gastric acid-reducing agents	■ N/A	 Avoid coadministration with proton pump inhibitors Take acalabrutinib 2 hr before an H2 receptor antagonist Separate dosing by at least 2 hr before and after antacids 	■ N/A

Conclusions

- BTK inhibitors have shown potent efficacy for treatment of CLL, MCL, MZL, and WM
 - Ibrutinib (first-generation BTK inhibitor) indicated in CLL, MCL, MZL, and WM
 - Acalabrutinib (second-generation BTK inhibitor) indicated in MCL and CLL
 - Zanubrutinib (third-generation BTK inhibitor) indicated in CLL, MCL, MZL, FL and WM
- BTK inhibitors are generally well tolerated but can be associated with treatment-related AEs such as diarrhea, bleeding, rash, and atrial fibrillation
- Open-ended treatment requires ongoing diligent management of AEs to ensure best outcomes
- Selecting optimal BTK inhibitor therapy for patients with CLL, MCL, MZL, and WM should be based on efficacy, safety profiles as well as patient preferences and comorbidities

Thank you for listening

癌症藥物(專業版)▼

癌症藥物(民眾版)▼

癌症另類輔助治療 ▼

各類癌症治療 ▼

兒童幹細胞移植 ▼

癌症臨床藥物資料庫

本資料庫由癌症臨床藥師方麗華所建立,關注癌症藥物、補充治療資訊、資童幹細胞移植等領域。

搜尋結果均以本站制定的格式編寫·提供專業人士及一般民眾更易閱讀的藥物資訊!

快速搜尋癌症藥物、用藥相關知識

